
Asymptotics for the Korteweg-de Vries equation in the
small dispersion limit

Tom Claeys

June 2009

SISSA Trieste

joint work with Tamara Grava

Asymptotics for the Korteweg-de Vries equation in the small dispersion limit – p.1/26



KdV equation

� Korteweg-de Vries (KdV) equation

ut + 6uux + ǫ2uxxx = 0, ǫ > 0

� initial data u(x, t = 0, ǫ) = u0(x)
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� small dispersion limit ǫ → 0
◮ different asymptotics for u(x, t, ǫ) in various

regions in (x, t)-plane
◮ transitions between different regions
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Hopf equation

� The KdV equation is a singular perturbation of the
Hopf equation (ǫ = 0)

ut + 6uux = 0
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� With the same type of initial data, evolution in time
of u(x, t) is given by

u(x, t) = u0(ξ), x = 6tu0(ξ) + ξ.

◮ solution moves to the left, minimum moves faster
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Hopf equation

� solution moves to the left, minimum moves faster
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◮ gradient catastrophe!
◮ solution does not remain well-defined for

t > tc =
1

maxξ∈R[−6u′
0(ξ)]

� What happens with KdV solution after time of
gradient catastrophe?
◮ interval [x−(t), x+(t)] of rapid oscillations
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KdV equation

� Formation of oscillatory zone
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KdV equation

� Formation of oscillatory zone
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KdV equation

� In the (x, t)-plane
◮ region where the asymptotic behavior (ǫ → 0) of

u(x, t, ǫ) is determined by the Hopf equation
◮ oscillatory region
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KdV equation

� exterior of the cusp
◮ solution can be approximated using Hopf

equation as ǫ → 0

� interior of the cusp
◮ solution can be approximated by elliptic functions

as ǫ → 0 (Lax-Levermore ’83, Venakides ’90,
Fei-Ran Tian ’93, Deift-Venakides-Zhou ’97)

� near the border of the two regions, these
approximations are not valid anymore
◮ leading edge
◮ trailing edge
◮ the point and time of gradient catastrophe
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KdV equation

� Critical asymptotics near the boundaries
◮ leading edge: Hastings-McLeod solution of

Painlevé II
◮ point of gradient catastrophe: special solution to

a higher order Painlevé I equation
◮ trailing edge: no Painlevé type behavior -

discontinuous transition
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Painlevé equations

� Painlevé II equation

Qxx = xQ + 2Q3.

◮ unique solution (Hastings-McLeod solution) with boundary
conditions

Q(x) ∼ Ai(x), as x → +∞,

Q(x) ∼
√

−x

2
, as x → −∞.

◮ this solution is smooth on the real line
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Painlevé equations

� Fourth order analogue of the Painlevé I equation

x = tU −
(

1

6
U 3 +

1

24
(U 2

x + 2UUxx) +
1

240
Uxxxx

)

.

◮ unique real solution U(x, t) satisfying the
following conditions:
→ U(x, t) has no poles for x, t ∈ R,
→ U has the following asymptotic behavior

U(x, t) = ∓61/3|x|1/3+O(x−1/3) as x → ±∞.

(Brézin-Marinari-Parisi ’90, Dubrovin ’06,
TC-Vanlessen ’07)
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Gradient catastrophe

Theorem (TC-Grava)

� Take a double scaling limit where we let ǫ → 0 and
at the same time x → xc and t → tc in such a way
that

x − xc − 6uc(t − tc) = O(ǫ6/7), t − tc = O(ǫ4/7).

Then we have

u(x, t, ǫ) = uc

+

(

2ǫ2

k2

)1/7

U

(

x − xc − 6uc(t − tc)

(8kǫ6)
1
7

,
6(t − tc)

(4k3ǫ4)
1
7

)

+ O
(

ǫ4/7
)

.

(conjectured by Dubrovin in much more general
settings)
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Leading edge

� Leading edge x− determined by equations

x−(t) = 6tu(t) + f−(u(t))

6t + θ(v(t);u(t)) = 0

∂vθ(v(t);u(t)) = 0,

with f− the inverse of the decreasing part of u0, and

θ(v;u) =
1

2
√

u − v

∫ u

v

f ′
−(ξ)dξ√
ξ − v

.

◮ Whitham equations
◮ Lax-Levermore minimization problem

� u(t) is leading order approximation of u(x, t, ǫ)

� v(t) is critical point of g-function
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Leading edge

Theorem (TC-Grava)
� Fix tc < t < T . Take a double scaling limit where we

let ǫ → 0 and at the same time x → x− in such a
way that

x − x− = O(ǫ2/3).

Under ’generic conditions’, we have

u(x, t, ǫ) = u(t)

− c2ǫ
1/3Q(−c1ǫ

−2/3(x − x−)) cos(2ωǫ−1) + O(ǫ2/3).

◮ in accordance with numerical results of Grava
and Klein
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Leading edge

� Oscillatory zone
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Trailing edge

� Fix tc < t < T . Take a double scaling limit where we
let ǫ → 0 and at the same time x → x+ in such a
way that

y := c0
x − x+

ǫ ln ǫ

remains bounded. Under ’generic conditions’, we
have
◮ u(x, t, ǫ) = u + O(ǫ1/2) for y ≤ −1

2 ,

◮ u(x, t, ǫ) = u + c1
αk

(1+αk)2 + O(ǫ1/2) for k − 1
2
≤ y ≤ k,

◮ u(x, t, ǫ) = u + c1
βk

(1+βk)2 + O(ǫ1/2) for k ≤ y ≤ k + 1
2
,

where

αk = c3,kǫ
1
2
+y−k, βk = c4,kǫ

1
2
+k−y, αk+1βk = 1.
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Riemann-Hilbert problem

Proofs of the results rely on
� a Riemann-Hilbert problem characterizing solutions

to the KdV equation
� small dispersion asymptotics for the associated

reflection coefficient
� an asymptotic analysis of the RH problem

◮ contour deformation
◮ construction of global and local parametrices
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Riemann-Hilbert problem

Proofs of the results rely on the Riemann-Hilbert
problem for KdV:
find a function M satisfying

(a) M : C \ R → C
2×2 is analytic

(b)
M+(λ) = M−(λ)









1 r(λ; ǫ)e2iα(λ;x,t)/ǫ

−r̄(λ; ǫ)e−2iα(λ;x,t)/e 1 − |r(λ; ǫ)|2









, for λ < 0,

M+(λ) = M−(λ)





0 1

1 0



 , for λ > 0,

with α given by α(λ;x, t) = 4t(−λ)3/2 + x(−λ)1/2.

(c) M(λ;x, t, ǫ) ∼





1 1

i
√
−λ −i

√
−λ



 for λ → ∞.
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Riemann-Hilbert problem

� if r(λ; ǫ) is the reflection coefficient for the
Schrödinger equation with potential u0, the KdV
solution u(x, t, ǫ) can be recovered from

u(x, t; ǫ) = −2iǫ∂xM1,11(x, t; ǫ),

where M11(λ;x, t, ǫ) = 1 +
M1,11(x, t; ǫ)√

−λ
+ O(1/λ) as λ → ∞.

� there are good approximations known for r(λ; ǫ) as
ǫ → 0
◮ exponential decay for λ < −1
◮ oscillatory behavior for −1 < λ < 0
◮ transition for λ ≈ −1

(Ramond ’96)
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Riemann-Hilbert problem

� using those approximations, we can perform the
Deift/Zhou steepest-descent method on the RH
problem (cf. Deift-Venakides-Zhou ’97)
◮ construction of G-function −→ Lax-Levermore

minimization problem
◮ contour deformation: opening of lenses
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Riemann-Hilbert problem
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Riemann-Hilbert problem

� on deformed contour, jump matrices are uniformly
close to constant matrices as ǫ → 0

◮ except near uc in the first picture

◮ except near u and v in the second and third picture

� ignoring special points and small jumps
−→ explicit solution of RH problem

� local parametrices near special points
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Riemann-Hilbert problem: local parametrices
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Riemann-Hilbert problem

� Hermite parametrix in last picture using the matrix

Ψ(ζ; k) =















π1/4
√

k!
2k/2 Hk(ζ)

π1/4
√

k!

2 · 2k/2πi

∫

R

Hk(u)e−u2

u − ζ
du

−2πi 2(k−1)/2

π1/4
√

(k−1)!
Hk−1(ζ) −

2(k−1)/2

π1/4
√

(k − 1)!

∫

R

Hk−1(ku)e−u2

u − ζ
du















e−
ζ2

2
σ3

◮ degree of Hermite polynomials depends on the
value of

y := c0
x − x+

ǫ ln ǫ
◮ k is the closest positive integer to y
◮ shift from k to k + 1 when y is a half integer
→ this transition describes the pulses
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Riemann-Hilbert problem

� Hermite polynomials do not appear in asymptotics
for u(x, t, ǫ), only the residue of Ψ(ζ)ζ−kσ3 at infinity
◮ sub-leading terms in expansion of u comes from

Hermite parametrix
� Airy parametrix: only residue at infinity contributes

◮ contribution only of order O(ǫ2/3)

� Outside parametrix: explicit construction
◮ leading order contribution
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Universality?

� Similar critical asymptotic regimes for other
equations?
◮ Riemann-Hilbert techniques leave space for

generalizations
◮ e.g. different time dependence of reflection

coefficient
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