NUMERICAL SIMULATIONS OF OCEAN WAVES

Miguel Onorato
Dip. Fisica Generale – Univ. Torino

MOTIVATIONS

 Verify some issues related to some theoretical prediction for wave spectra

 Understand the statistical properties of the surface elevations and the formation of extreme waves

OUTLINE OF THE PRESENTATION

 Introduce the equations for water waves and the Hamiltonian formulation

Discuss the model used for numerical simulations

Applications

Conclusions

WATER WAVES PROBLEM:

two fluids (air and water) separated by an interface

Hypothesis:

- incompressible
- inviscid
- irrotational
- flat bottom

$$\begin{cases} \nabla^2 \phi = 0 & -h < z < \eta(x, y, t) \\ \phi_t + \frac{1}{2} |\nabla \phi|^2 + g \eta = 0 & z = \eta(x, y, t) \\ \eta_t + \nabla \phi \cdot \nabla \eta - \phi_z = 0 & z = \eta(x, y, t) \\ \phi_z = 0 & z = -h \end{cases}$$

HAMILTONIAN FORMULATION

(Zakharov 1968)

Introduce the potential at the surface

$$\psi(\mathbf{x},t) = \phi(\mathbf{x},z = \eta,t)$$

Then η and ψ are canonically conjugated variables

$$\frac{\partial \eta(\mathbf{x},t)}{\partial t} = \frac{\delta H}{\delta \psi(\mathbf{x},t)}$$

$$\frac{\partial \psi(\mathbf{x},t)}{\partial t} = -\frac{\delta H}{\delta \eta(\mathbf{x},t)}$$

With

$$H = \frac{1}{2} \int \int_{-h}^{\eta} \left[\left(\nabla \phi \right)^2 + \left(\frac{\partial \phi}{\partial z} \right)^2 \right] d\mathbf{x} dz + \frac{1}{2} g \int \eta^2 d\mathbf{x}$$

INTRODUCTION OF THE COMPLEX VARIABLE

$$a(\mathbf{k},t) = \sqrt{\frac{g}{2\omega_k}} \eta(\mathbf{k},t) + i \sqrt{\frac{\omega_k}{2g}} \psi(\mathbf{k},t)$$

New pair of canonical variables $a(\mathbf{k},t)$, $ia*(\mathbf{k},t)$

$$i\frac{\partial a(\mathbf{k},t)}{\partial t} = \frac{\delta H}{\delta a * (\mathbf{k},t)}$$

WEAK NONLINEARITY!!

Expansion of the Hamiltonian in powers of a and a*

Truncation at third order in nonlinearity (four wave interactions)

$$H = H_o + H_1 + H_2 + \dots$$

$$\begin{split} H_o &= \int \left| a_k \right|^2 dk \\ H_1 &\sim \int U_{0,1,2} (a_0^* a_1 a_2 + a_0 a_1^* a_2^*) \delta(k_0 - k_1 - k_2) dk_{0,1,2} \\ H_2 &\sim \int W_{0,1,2,3} (a_0^* a_1^* a_2 a_3 + a_0 a_1 a_2^* a_3^*) \delta(k_0 + k_1 - k_2 - k_3) dk_{0,1,2,3} \end{split}$$

EVOLUTION EQUATIONS FOR THE ORIGINAL VARIABLES

$$\frac{\partial \eta_0}{\partial t} - |k_0| \psi_0 = \int U_{0,1,2} \psi_1 \eta_2 \delta(k_0 - k_1 - k_2) dk_{1,2} + \int W_{0,1,2,3} \psi_1 \eta_2 \eta_3 \delta(k_0 + k_1 - k_2 - k_3) dk_{1,2,3}$$

$$\frac{\partial \psi_0}{\partial t} + g \eta_0 = \int V_{0,1,2} \psi_1 \psi_2 \delta(k_0 - k_1 - k_2) dk_{1,2} + \int Z_{0,1,2,3} \psi_1 \psi_2 \eta_3 \delta(k_0 + k_1 - k_2 - k_3) dk_{1,2,3}$$

$$U_{0,1,2} = \mathbf{k}_0 \cdot \mathbf{k}_1 - |\mathbf{k}_0| |\mathbf{k}_1|$$

$$W_{0,1,2,3} = -\frac{1}{2} |\mathbf{k}_0| |\mathbf{k}_1| (|\mathbf{k}_0| + |\mathbf{k}_1| - |\mathbf{k}_1 + \mathbf{k}_3| - |\mathbf{k}_1 + \mathbf{k}_2|)$$

CONVOLUTION INTEGRALS CAN BE COMPUTED USING THE FFT ALGORITHM!!!

CONSTANT FLUXES IN WAVE SPECTRUM

3D turbulence: direct cascade (Kolmogorov 41)

Surface gravity waves: double cascade (Zakharov 1966))

constant flux of energy

constant flux of energy and wave action

STATISTICAL DESCRIPTION OF THE SURFACE ELEVATION

The goal is to write an evolution equation for the Wave Action Spectrum $P(\mathbf{k},t)$:

$$< a(\mathbf{k}_1, t)a^*(\mathbf{k}_2, t) >= N(\mathbf{k}_1, t)\delta(\mathbf{k}_1 - \mathbf{k}_2)$$

Related to the Wave Spectrum:

$$P(\mathbf{k},t) = N(\mathbf{k},t)\omega(\mathbf{k})$$

Quasi-Gaussian approximation

$$< a_1^* a_2^* a_3 a_4 > = < a_1^* a_2^* > < a_3 a_4 > + < a_1^* a_3 > < a_2^* a_4 > + < a_1^* a_4 > < a_2^* a_3 > + D_{1,2,3,4}$$

RESULT: the wave kinetic equation

$$\frac{\partial N_1}{\partial t} = J(\mathbf{k}_1)$$

 $J(\mathbf{k})$ is the collision integral

$$J(\mathbf{k}_1) = \int |T_{1,2,3,4}|^2 N_1 N_2 N_3 N_4 \left(\frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N_3} - \frac{1}{N_4} \right) \delta(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3 - \mathbf{k}_4) \delta(\omega_1 + \omega_2 - \omega_3 - \omega_4) d\mathbf{k}_{2,3,4}$$

 $T_{1.2.3.4}$ is the scattering matrix

Resonant condition

$$\begin{cases} \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4 \\ \omega_1 + \omega_2 = \omega_3 + \omega_4 \end{cases}$$

Collision invariants:

$$E = \int \omega_{\mathbf{k}} N_{\mathbf{k}} d\mathbf{k} \qquad \mathbf{M} = \int \mathbf{k} N_{\mathbf{k}} d\mathbf{k} \qquad \mathbf{N} = \int N_{\mathbf{k}} d\mathbf{k}$$

Total energy

$$\mathbf{M} = \int \mathbf{k} N_{\mathbf{k}} d\mathbf{k}$$

Total momentum Total wave action

$$N = \int N_{\mathbf{k}} d\mathbf{k}$$

STATIONARY SOLUTIONS OF THE HOMOGENEOUS WAVE KINETIC EQUATIONS

Thermodynamic solutions:

$$N_{\mathbf{k}} = \frac{1}{a + b\omega_{\mathbf{k}} + \mathbf{c} \cdot \mathbf{k}}$$

$$a = 0 \rightarrow$$
 equipartition of energy

$$b = 0 \rightarrow$$
 equipartition of wave action

solutions are relevant for a close system (without forcing or dissipation)

For ocean waves such solutions are never observed!!

STATIONARY SOLUTIONS OF THE **HOMOGENEOUS WAVE KINETIC EQUATIONS**

Non equilibrium solutions (Kolmogorv-Zakharov spectra):

Additional hypothesis:

 $\omega(\mathbf{k}), T_{1,2,3,4}$ invariant respect rotations and homogeneous functions of their arguments, i.e.

$$\begin{cases} \omega(\mathbf{k}) = Ak^{\alpha} \\ T(\lambda \mathbf{k}_{1}, \lambda \mathbf{k}_{2}, \lambda \mathbf{k}_{3}, \lambda \mathbf{k}_{4}) = \lambda^{\beta} T(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}) \end{cases}$$

$$N_{\rm k} \sim k^{-\nu}$$
 $v = 2 + \frac{2\beta}{3}$ direct energy cascade

 $N_{\rm k} \sim k^{-\nu}$ $v = 2 + \frac{2\beta - \alpha}{2}$ inverse wave action cascade

EVIDENCE OF POWER LAW FOR WATER WAVES:

$$P(k) \sim k^{-2.5}$$

First experimental evidence:

Y. Toba, J. Ocean Soc., Jpn. 1973

Numerical evidence from numerical computation:

Freely decaying (direct cascade)

M.O. et al. Phys Rev. Lett. 2001

Forced (direct and inverse cascade)

A. Korotkevich Phys Rev. Lett. 2008

NUMERICAL SIMULATION OF TRUNCATED EULER EQUATIONS

WAVE SPECTRUM

COMPENSATED WAVE SPECTRUM

From A. Korotkevich PRL 2008

WAVE FORECASTING

What we can predict today:

- i) Significant wave height (Hs = 4σ)
- ii) Dominant period
- iii) Dominant direction of propagation of the waves

These information are included in the wave spectrum

THE WAM (WAve Model)

Model developed in Reading, U.K. (ECMWF), operational from 1992

It is a global model coupled with the atmospheric model.

24 directions and 30 frequencies, resolution: 40 km

Similar model was developed by NOAA (USA) some years later

$$\frac{\partial N_1}{\partial t} + \mathbf{C}_1 \cdot \nabla N_1 = J(\mathbf{k}_1) + S_{wind} + S_{diss}$$

WAVE HEIGHT

Time series from Draupner Stat-Oil Platform (North Sea) January, 1 - 1995

SOME MECHANISMS OF FORMATION OF EXTREME WAVES

- Linear superposition
- Nonlinear Focusing (modulational instability)
- Crossing Seas in deep water
- Crossing seas in shallow water

NONLINEAR FOCUSING (MODULATIONAL INSTABILITY)

Hypothesis:

- Waves propagate in one direction
- Narrow band approximation
- Weakly nonlinearity

2.5 2.0 1.5 panigdury 1.0 us 5pace - x 48 32 Time - t

NLS

Focusing for *kh*>1.36 Defocusing for *kh*≤1.36

Are these solutions of any relevance for real ocean waves?

Do these solutions change the statistical properties of the surface elevation?

THE STATISTICAL PROPERTIES OF SURFACE GRAVITY WAVES: LINEAR THEORY

Longuet-Higgins (1952): the surface elevation is described by a Gaussian process; in the narrow band approximation wave heights and wave crests are described by a Rayleigh distribution

Longuet-Higgins (1963), Tayfun (1980):

Corrections to the Rayleigh distribution for wave crests due to the influence of Stokes-like (phase-locked) components

1D NUMERICAL SIMULATION OF TRUNCATED EULER EQUATIONS

EXPERIMENTS AT MARINTEK (NORWAY)

OCEAN WAVES ARE NOT UNIDIMENSIONAL!!

EVOLUTION OF KURTOSIS IN TIME

COLLABORATORS

A. Toffoli, A. R. Osborne