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A Review: Burger’s equation

ut + uux = 0, x ∈ [0, 2π] , t ∈ [0, 1[

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).
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What does the Fourier–spectrum say?
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1. Tracking a singularity in the complex
plane

If an analytic function

u(Z) =
∞X
k=0

akZ
k = (1− Z/Z∗)αr(Z) + a(Z)

has an algebraic singularity of type α at the complex location
Z∗, with

r(Z) =
∞X
n=0

bn(1− Z/Z∗)n

then the asymptotic behavior of its Taylor coefficients is given
by (Darboux Theorem):

ak ∼
∞X
n=0

(−1)nbnZ
n−k
∗ Γ(k − α− n)

k!Γ(−α− n)

The leading term is simply

ak ∼ b0k
−(1+α)

Z
−k
∗ .

If Z = exp(−iz), Z∗ = exp(−i(x∗ + iδ)) and ak = ûk, then
the spectrum has the following (Laplace formula) asymptotic
(in k) behavior:

ûk ∼ C|k|−(1+α) exp (−δk) exp (ix∗k).
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The rate of the exponential decay of the spectrum δ gives the
distance of the singularity from the real axes.

The time ts at which δ(ts) = 0 gives the exact time of the
development of the singularity.

The estimate of x∗ and α gives, respectively, the real location
x∗ and the algebraic type of the singularity.



Tracking a . . .

Zero viscosity . . .

Pade . . .

Home Page

Title Page

JJ II

J I

Page 6 of 58

Go Back

Full Screen

Close

Quit

The rate of the exponential decay of the spectrum δ gives the
distance of the singularity from the real axes.

The time ts at which δ(ts) = 0 gives the exact time of the
development of the singularity.

The estimate of x∗ and α gives, respectively, the real location
x∗ and the algebraic type of the singularity.
The picture behind the idea of the singularity tracking method
is to complexify the spatial variable

singularity 
ℑx 

ℜx 

strip       
of          
analyticity 

δ 

i.e. a singularity does not comes out of the blue, but sits in the
complex plane, maybe headed to hit the real axis. When the
singularity hits the real axis the singularity shows up in the real
world as a blow up (of the solution or of the derivative depends
on the algebraic character of the complex singularity).
Evaluating the exponential rate of decay of the spectrum of
the solution one knows the distance δ of the singularity from
the real axis.

log |ûk| ∼ C − (1 + α) log(k)− δk
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The method was introduced in ’83 by Sulem, Sulem and
H.Frisch. Their goal was the issue of the global in time reg-
ularity of the Euler equations.
Lack of computational power postponed for decades the pos-
sibility of tackling such a problem.
A more subtle issue is the fact that when the singularity ap-
proaches the real axis exponentially slow then the method can
run out of steam.
However if there is a reasonable confidence that an equation
develop a singularity, tracing the complex singularity has be-
come a powerful method to follow and characterize the whole
process.

• Vortex sheets:
Shelley J. Fluid. Mech., 1992
Cowley, Baker, and Tanveer J. Fluid. Mech., 1999

• Hele–Shaw flows:
Goldstein, Pesci, and Shelley, Physics of Fluids, 1998

• Thin–Jets:
Pugh and Shelley, Comm. Pure Appl. Math.1998
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The method was introduced in ’83 by Sulem, Sulem and
H.Frisch. Their goal was the issue of the global in time reg-
ularity of the Euler equations.
Lack of computational power postponed for decades the pos-
sibility of tackling such a problem.
A more subtle issue is the fact that when the singularity ap-
proaches the real axis exponentially slow then the method can
run out of steam.
However if there is a reasonable confidence that an equation
develop a singularity, tracing the complex singularity has be-
come a powerful method to follow and characterize the whole
process.

• Vortex sheets:
Shelley J. Fluid. Mech., 1992
Cowley, Baker, and Tanveer J. Fluid. Mech., 1999

• Hele–Shaw flows:
Goldstein, Pesci, and Shelley, Physics of Fluids, 1998

• Thin–Jets:
Pugh and Shelley, Comm. Pure Appl. Math.1998

• Complex 3D Euler with swirl:
Caflisch Physica D, 1993
Caflisch and Siegel, Methods Appl. Anal. 2004

• Formation of a complex singularity in 2D Euler:
Matsumoto, Bec, U.Frisch Fluid. Dynam. Res. 2005
Pauls, Matsumoto, Bec, U.Frisch Physica D 2006

• For a review and perspectives see:
U.Frisch, Matsumoto and Bec, J. Statist. Phys. 2003
Pauls and Frisch J. Statist. Phys. 2007.
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Tracking complex singularity: Burger’s equation
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Tracking complex singularity: analytic result

In the sequel we shall be dealing with functions that are ana-
lytic in the complex variable x. We hence introduce the strip
in the complex plane.

D(ρ) = {x ∈ C : =x ∈ (−ρ, ρ)} .
The L2 integration is performed along the following path:

Γ(b) = {x ∈ C : =x = b} .

• H0,ρ is the set of all complex functions f(x) such that

• f is analytic in D(ρ) ;

• f ∈ L2(Γ(=x)) for =x ∈ (−ρ, ρ),; i.e. if =x is
inside (−ρ, ρ), then f(<x + i=x) is a square inte-
grable function of <x ;
• |f |ρ = sup=x∈(−ρ,ρ) ‖f(· + i=x)‖L2(Γ(=x)) <∞.

• Hk,ρ is the set of all complex functions f(x) such that

• ∂jxf ∈ H0,ρ for 0 ≤ j ≤ k;
• ‖f‖k,ρ ≡

P
0≤j≤k |∂jxf |ρ <∞.

This norm is equivalent to:

‖f‖k,ρ =

»Z
e

2ρ|ξ|(1 + |ξ|2)k |f̂(ξ)|2 dξ
–1/2

.
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We now state the ACK Theorem in the form given by Safonov.
Consider the problem:

u + F (t, u). (1)

Theorem[ACK]
Suppose that ∃R > 0, ρ0 > 0, and β0 > 0 such that if
0 < t ≤ ρ0/β0, the following properties hold:

(a) ∀ 0 < ρ′ < ρ ≤ ρ0 and ∀u s.t. {u ∈ Xρ : sup
0≤t≤T

|u(t)|ρ ≤
R} the map
F (t, u) : [0, T ] 7→ Xρ′ is continuous.

(b) ∀ 0 < ρ < ρ0 the function F (t, 0) : [0, ρ0/β0] 7→ {u ∈
Xρ : sup

0≤t≤T
|u(t)|ρ ≤ R} is continuous and

|F (t, 0)|ρ ≤ R0 < R .

(c) ∀0 < ρ′ < ρ(s) < ρ0 and ∀ u and w ∈ {u ∈ Xρ :
sup

0≤t≤T
|u(t)|ρ−β0t ≤ R},

|F (t, u)− F (t, w)|ρ′ ≤ C
Z t

0

ds

„|u− w|ρ(s)

ρ(s)− ρ′
«
.

Then ∃β > β0 such that ∀0 < ρ < ρ0 Eq. (1) has a
unique solution u(t) ∈ Xρ with t ∈ [0, (ρ0− ρ)/β]; moreover

sup
ρ<ρ0−βt

|u(t)|ρ ≤ R.
Under this point of view the ACK is just an analytic tool that
allows to bound the speed at which the singularity travels in
the complex plane.
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Camassa–Holm equation: analytic results

ut − uxxt + 3uux = 2uxuxx + uuxxx

We write the Camassa—Holm in a form suitable for the
application of the ACK Theorem:

ut + uux = − ik

1 + k2

„
u

2 +
1

2
u

2
x

«
,

where k is the dual Fourier variable of x.
With an integration in time one gets u = F (t, u) where:

F (t, u) ≡ u0 −
Z t

0

dt
′
»
uux +

ik

1 + k2

„
u

2 +
1

2
u

2
x

«–
Theorem[Lombardo,Sammartino and S. 04]
Let u0 ∈ H1,ρ0 be the initial datum of the Camassa–Holm
equation. Then there exists β > 0 such that for any ρ with
0 < ρ < ρ0 there exists a unique continuously differentiable
(w.r.t. time) solution u of the Camassa–Holm equation with
the following property:

• u(·, t) ∈ H1,ρ and ∂tu(·, t) ∈ H1,ρ when t ∈
h

0, ρ0−ρ
β

i
.

Theorem[Lombardo,Sammartino and S. 04]
Suppose the initial datum of the Camassa–Holm equation
satisfy u0 ∈ Hr,ρ with r > 3/2, |u0|L1 <∞, u0 − ∂xxu0 ≥ 0
(or ≤ 0). Then the unique solution u(x, t) belongs to the
Gevrey class of index 1 globally in time.
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Camassa–Holm equation: numerical results

ut + uux = − ik

1 + k2

 
u

2 +
u2
x

2

!
,

This means that, if one defines:

Fk(u) = −
»

(̂uux)k +
ik

1 + k2

„d(u2)k +
1

2
d(u2
x)k

«–
,

the dynamics of the k-th Fourier mode of u is ruled by:∂tuk =
Fk(u) . Dividing the time interval [0, T ] in N sub-intervals of
size ∆t = T/N , we write the approximation:

u(x, n∆t) ≈
k=K/2X
k=−K/2

u
n
ke

ikx
.

We solve the ODE’s system using an explicit Runge–Kutta
method of the 4–th order. The numerical scheme therefore
is:

u
n+1
k = u

n
k +

∆t

6

“
Γ1
k + 2Γ2

k + 2Γ3
k + Γ4

k

”
,

where Γik = Fk(V i) i = 1, 2, 3, 4, with:

V
1
k = u

n
k , V

2
k = V

1
k +

∆t

2
Γ1
k , V

3
k = V

2
k +

∆t

2
Γ2
k , V

4
k = V

3
k +∆tΓ3

k .

The scheme is initialized by u0
k = hk, where hk being the

coefficients in the Fourier expansion of the initial data h(x).
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Camassa–Holm equation I: h(x) = sin (x)

We first consider the initial datum h(x) = sin (x). Given
that the integral of the datum on [0, 2π] is zero, this datum
develops singularity in finite time.
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The CH solution with h(x) = sin (x). In the top two figures
the solution before the singularity and at the singularity time.
In the bottom figures we show the derivative of the solution.
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The exponential and the algebraic decay of the spectrum.
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The width of the analyticity strip shrinks to zero at t ≈ 1.34.
At the singularity the solution behaves like (x − x∗)α with
α ≈ 0.58.
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Camassa–Holm equation II: h(x) = 1 + sin (x)

The condition on the initial datum (1− ∂xx)h > 0, together
with the regularity condition h ∈ Hs s > 3/2, ensures the
long time regularity of the solution. The initial datum h(x) =
1 + sin (x) violates this condition and it is a candidate to
singularity formation.
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The formation of a peaked singularity. The solution seems to
have a blow–up in the derivative. We have tried to follow the
solution after the singularity time: the “peak” seems to move
at speed approximately equal to its height c ≈ 2.
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The exponential and the algebraic decay of the spectrum.

0 100 200 300 400 500

−40

−30

−20

−10

0

−50

−60

−70

k

log|u
k
|

T=1.0

T=1.4
T=1.3
T=1.2

T=1.1

T=1.53

T=0.9

In the above figures one can follow the formation of the sin-
gularity as the shrinking to zero of the strip of analyticity.
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The singularity time is therefore estimated as tc ≈ 1.53. At
the singularity time the solution behaves like (x − x∗)α with
α ≈ 2/3.
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The oscillatory behavior of the spectrum.
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We show the behavior of the real part of the spectrum (cleared
up from both the exponential and algebraic decay) at different
times. The imaginary part has the same character.



Tracking a . . .

Zero viscosity . . .

Pade . . .

Home Page

Title Page

JJ II

J I

Page 18 of 58

Go Back

Full Screen

Close

Quit

b–family equations: analytic results

We apply the ACK theorem to the b–family equations (Holm
& Stanley 01) to prove the short time existence of analytic
solution. First of all we write the b–family equation in a form
suitable for the applicatin of the ACK theorem. It is easy to
see that the b–family equation can be written in the following
form:

(1−∂2
x)(ut+uux) = (b−3)uxuxx−buux = −∂x

„
b

2
u

2 +
3− b

2
u

2
x

«
,

and finally in the pseudodifferential form

ut + uux = −A−2

„
b

2
u

2 +
3− b

2
u

2
x

«
x

,

where we denote by A2 = (1− ∂2
x). Finally, with an integra-

tion in time one obtain

u = F (u, t), with

F (u, t) = u0 −
Z t

0

»
uux + A

−2

„
b

2
u

2 +
3− b

2
u

2
x

«
x

–
dt
′
.
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Theorem[Coclite and S. 09]
Let 1 ≤ b ≤ 3 and let the initial data for the b–family u0 ∈
H1,ρ0. Then there exists β > 0 such that for any ρ, with 0 <
ρ < ρ0, there exists a unique continuously differentiable w.r.t.
time solution u of the b–family equation with the following
propertiy:

• u(·, t) ∈ H1,ρ and ∂tu(·, t) ∈ H1,ρ, when t ∈
h

0, ρ0−ρ
β

i
.

Theorem[Coclite and S. 09]
Let 1 ≤ b ≤ 3 and A2 = (1− ∂2

x). Let u0 ∈ D(Areρ0A), with
r > 3/2, ρ0 > 0 and m0 = u0 − u0xx does not change sign.
Then the unique solution u of the b–family equation lies in
Gevrey class of index 1 globally in time.
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b–family equations: numerical results

Let us consider in this section the b–family equation in the
spatial domain [0, 2π], with periodic boundary conditions, and
we solve this equation using Fourier spectral method. We use
the b-family equation written in pseudodifferential form

ut + uux = − ik

1 + k2

„
b

2
u

2 +
3− b

2
u

2
x

«
,

where now k is the dual Fourier variable of x. Then the
dynamics of the kth Fourier mode of u is described by the
following ODE

∂tûk = −
»

(̂uux)k +
ik

1 + k2

„
b

2
d(u2)k +

3− b
2
d(u2
x)k

«–
.

Dividing the time interval [0, T ] in N sub–intervals of size
∆t = T/N , we approximate the solution u as

u(x, n∆t) ≈
K/2X

k=−K/2

û
n
ke

ikx;

and we solve the system of ODE using explicit Runge–Kutta
method of the 4th order with initial conditions given by

û
0
k = ĥk,

with ĥk the Fourier coefficients of the initial data u(x, 0) =
h(x).
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b–family equations I: h(x) = sin (x)
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The singularity times and the type of singularities for differents
values of b.
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b–family equations I: h(x) = 1 + sin (x)
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The singularity times and the type of singularities for differents
values of b.
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2. Zero viscosity limit for NS equations
Consider the Navier-Stokes equations:

∂tu + (u ·∇) u + ∇p = ν∆u ,
∇ · u = 0 ,

u(t = 0) = u0 ,

We want to consider the situation when the viscosity ν → 0.

Formally one has that the solution should behave as prescribed
by Euler equations.

∂tu + u ·∇u + ∇p = 0
∇ · u = 0

This was proved by Swann Trans AMS 1971 in R3 (no bound-
aries) and by Constantin and Wu Nonlinearity 1995 for vortex
patches in R2, i.e. when the initial vorticity is the charac-
teristic function of a domain. The rate of convergence was
O(ν).



Tracking a . . .

Zero viscosity . . .

Pade . . .

Home Page

Title Page

JJ II

J I

Page 25 of 58

Go Back

Full Screen

Close

Quit

2. Zero viscosity limit for NS equations
Consider the Navier-Stokes equations:

∂tu + (u ·∇) u + ∇p = ν∆u ,
∇ · u = 0 ,

u(t = 0) = u0 ,

We want to consider the situation when the viscosity ν → 0.

Formally one has that the solution should behave as prescribed
by Euler equations.

∂tu + u ·∇u + ∇p = 0
∇ · u = 0

This was proved by Swann Trans AMS 1971 in R3 (no bound-
aries) and by Constantin and Wu Nonlinearity 1995 for vortex
patches in R2, i.e. when the initial vorticity is the charac-
teristic function of a domain. The rate of convergence was
O(ν).

We want to discuss a different situation:

• Fluids with boundaries, e.g. half–plane, half–space, ex-
terior of a disk.
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Fluids in presence of a boundary

The discrepancy between the boundary conditions u = 0 for
NS and un = 0 for Euler, makes it clear that one cannot hope:‚‚‚uNS − uE‚‚‚ −→ 0 when

√
ν = ε→ 0 ,

at least close to the boundary.
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Fluids in presence of a boundary

The discrepancy between the boundary conditions u = 0 for
NS and un = 0 for Euler, makes it clear that one cannot hope:‚‚‚uNS − uE‚‚‚ −→ 0 when

√
ν = ε→ 0 ,

at least close to the boundary.

The above picture is in contrast with conservation of vorticity
unless a huge amount of voricity is created at the boundary.
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fluid
n
6

τ
- When ν → 0

one gets a singular
limit.
The fluid shows
two different
regimes.

• Far away from the boundary:
viscous forces � inertial forces =⇒ Euler equations
might be OK

• Close to the boundary:
viscous forces are NOT neglegible =⇒ ?? equations?
Something wild is going on close to the boundary: high
generation of vorticity.
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The desire to get a simplification led Prandtl to use asymp-
totics.
His procedure is based on the following ideas:

• Away from the boundary viscous forces (ε2∆u) can be
neglected wrt convective forces (u ·∇u). Euler OK.
• Close to the boundary viscous forces stop the fluid. They
cannot be neglected.

• The transition between the two regimes is rapid.
This is implemented through the scaling, valid close to
the boundary:

Y = y/ε and hypothesis ∂Y u = O(1) .

• Moreover ∂xu = O(1).

This implies: ε2∂yyu = ∂Y Y u = O(1) = u∂xu.
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The desire to get a simplification led Prandtl to use asymp-
totics.
His procedure is based on the following ideas:

• Away from the boundary viscous forces (ε2∆u) can be
neglected wrt convective forces (u ·∇u). Euler OK.
• Close to the boundary viscous forces stop the fluid. They
cannot be neglected.

• The transition between the two regimes is rapid.
This is implemented through the scaling, valid close to
the boundary:

Y = y/ε and hypothesis ∂Y u = O(1) .

• Moreover ∂xu = O(1).

This implies: ε2∂yyu = ∂Y Y u = O(1) = u∂xu.
Introducing the above scaling in the NS equations:

∂tu + u∂xu + v∂Y u + ∂xp = ∂Y Y u
∂Y p = 0

∂xu + ∂Y v = 0
u(x, Y = 0) = v(x, Y = 0) = 0

u(x, Y →∞) −→ u
E(x, y = 0)

u(x, y, t = 0) = uin .

The procedure is therefore:
First solve Euler equations. Get the boundary data uE(y = 0)
Then solve Prandtl with the matching condition.
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Relevance of Prandtl’s equations

• Prandtl’s equations, in their essence, look particularly
simple: they just are one equation for the tangential
velocity u:

∂tu + u∂xu + v∂Y u + ∂xp
E = ∂Y Y u

Therefore they are a good toy model to mimic the par-
ticularly complicated behavior (generation of vorticity)
of the NS solutions near the boundary.
They have been successfully used to calculate quantities
of practical importance like drag coefficient, or shear
stress.

• A fundamental problem in fluid dynamics is to prove that
uNS → uE away from boundaries.
Kato in 1984 proved his famous criterion:
Theorem
The following conditions are equivalent:

‖uNS − uE‖L2 −→ 0 uniformly in t ∈ [0, T ] (2)

ν

Z T

0

‖∇uNS‖2
Γν
dt −→ 0. (3)

Where ‖ · ‖Γν denotes the L2-norm restricted to a strip
of width O(ν) close to the boundary.
If one wants to solve the zero viscosity problem of the
NS equations one has to face the boundary layer:
i.e. control or improve (or disprove) Prandtl’s equations.
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Well posedness results

• Short time existence if the initial data are monotonous
(no initial shear layer).
This is the Oleinik ’67 result.

• Long time existence if one adds the hypothesis that
the outer pressure gradient is favourable,i.e. ∂xp =
−U∂xU ≤ 0. This means that no mechanism that can
produce shear layer is present.
This is Xin and Zhang ’03 result.

• Short time existence for analytic data (without assum-
ing monotonicity). This means that the data are highly
non turbulent. Higher Fourier modes are almost non ex-
istent.
Sammartino and Caflisch ’98
Lombardo Cannone and Sammartino ’03.
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THE DARK SIDE OF PRANDTL’s EQUATIONS

Vorticity is generated at the boundary.
The mechanism through this vorticity is shed into the main
flow is separation, i.e. the detachment of the boundary layer.
SINGULARITY OF PRANDTL’S EQUATIONS.
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The possibility that the unsteady Prandtl’s equations devel-
oped singularity was:

• conjectured in the ’60s.

• First disproved (numerically with low resolution) in the
’70s.

• Found numerically in the ’80s by Van Dommelen and
Shen in the case of the impulsively started disk.

The Van Dommelen and Shen’s singularity is a shock and is
ubiquitous.

In fact was also found for other boundary layer flows, like
cavity flow (E and Liu ’96) and thick core vortex flow Cassel
’00, Obabko and Cassel ’02,’05.
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The physical mechanisms that lead to the VDS singularity is
recirculation:
• It forms back-flow, and a stagnation point, as the result
of adverse pressure gradient;

• Then two counter rotating vortices appear;

• Growth of these vortices;

• Finally, a singularity with eruption of fluid from within
the boundary layer: separation.
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The physical mechanisms that lead to the VDS singularity is
recirculation:
• It forms back-flow, and a stagnation point, as the result
of adverse pressure gradient;

• Then two counter rotating vortices appear;

• Growth of these vortices;

• Finally, a singularity with eruption of fluid from within
the boundary layer: separation.
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Complex Singularity Tracking and Separation Sin-
gularity

In Della Rocca, Lombardo, Sammartino, S.’05 it is studied
the VDS singularity using the singularity tracking method.
It is possible to extend the technique of tracking singularity
for bi–dimensional functions.
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Complex Singularity Tracking and Separation Sin-
gularity

In Della Rocca, Lombardo, Sammartino, S.’05 it is studied
the VDS singularity using the singularity tracking method.
It is possible to extend the technique of tracking singularity
for bi–dimensional functions.
A first way (Frisch et al. ’05) consists to applying the tech-
nique of tracking singularity to the shell–summed amplitude
of the Fourier expansion. Given a function u(z, w), with z
and w complex variables, with

u(z, w) =
X
h,k

ahke
ihz
e
ikw
,

the corresponding shell–summed Fourier amplitude is defined
by

AK ≡
X

K≤|κ|<K+1

ahk,

where |κ| = |(h, k)|. At this point one can evaluate by
Laplace asymptotic formula with the behavior of AK deter-
mining the distance δ of the singularity and its algebraic char-
acterization, like in the one dimensional case.
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Another possible extension (Poincaré 1899, Tsikh 1993) con-
sists to evaluate the Laplace asymptotic formula for each di-
rection of the fourier spectrum and the distance δ is the min-
imum over all directions.
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Another possible extension (Poincaré 1899, Tsikh 1993) con-
sists to evaluate the Laplace asymptotic formula for each di-
rection of the fourier spectrum and the distance δ is the min-
imum over all directions.

Consider ~k = (k cos(θ), k sin(θ)).

bu~k =

Z Z
u(x, y)e−i

~k·~x
d~x

=

Z „Z
u(x‖bk + x⊥bk⊥)dx⊥

«
e
−ikx‖dx‖

=

Z
g(x‖)e

−ikx‖dx‖.

It follows from Laplace asymptotic formula that, for k −→
∞, bu~k ∼ e−ikx

∗
‖, where x∗‖ is the singularity of g(x‖) in the

complex x‖ plane nearest to the real domain. Hence |bu~k| ∼
e−δ(θ) where δ(θ) = −=x∗‖.
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Another possible extension (Poincaré 1899, Tsikh 1993) con-
sists to evaluate the Laplace asymptotic formula for each di-
rection of the fourier spectrum and the distance δ is the min-
imum over all directions.

Consider ~k = (k cos(θ), k sin(θ)).

bu~k =

Z Z
u(x, y)e−i

~k·~x
d~x

=

Z „Z
u(x‖bk + x⊥bk⊥)dx⊥

«
e
−ikx‖dx‖

=

Z
g(x‖)e

−ikx‖dx‖.

It follows from Laplace asymptotic formula that, for k −→
∞, bu~k ∼ e−ikx

∗
‖, where x∗‖ is the singularity of g(x‖) in the

complex x‖ plane nearest to the real domain. Hence |bu~k| ∼
e−δ(θ) where δ(θ) = −=x∗‖.

To solve numerically Prandtl’s equations we use the mixed
spectral Fourier-Chebyshev numerical scheme

u(x, Y,4t) ≈
k=K/2X
k=−K/2

j=MX
j=0

u
n
k,je

ikx
Tj(Y )

The temporal scheme used is the two step RK–CN to treat
implicitly the diffusive term.
The normal velocity component is recovered by numerical in-
tegration through the incompressibility condition.
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The profile of the distance δ at the singularity time w.r.t. the
angle θ for the solution of Prandtl’s equation in the VDS case.
The distance δ is an increase function of θ, with ≈ 10−4 when
θ ≈ 0.035π.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

θ/π

δ(θ)



Tracking a . . .

Zero viscosity . . .

Pade . . .

Home Page

Title Page

JJ II

J I

Page 38 of 58

Go Back

Full Screen

Close

Quit

Thus for the VDS initial condition, one can studies the sin-
gularity formation of Prandtl applying the singularity tracking
method to the x variable at different values of the normal
Y variable. The distance reaches its minimum at location
Y ≈ 5.

0 1 3 5 7 9 11
0

0.02

0.04

0.06

0.08

0.1

0.12

t=1.5
y

δ

Therefore, an estimation on the rate of the exponential decay
δ of the spectrum in the streamwise variable at location Y =
5, gives the distance of the VDS singularity from the real axes,
and the first time ts at which δ(ts) = 0 gives the exact time
of the development of the singularity.
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A shock type singularity α ≈ 1/3 forms at time ts ≈ 3 at
location x∗ ≈ 1.95 and Y ≈ 5.
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Prandtl and NS: Row of equidistant point vortices

In a cartesian frame, the vortices are centered in (ma + π,
b)mε∈Z, where b is the distance of the the row from the wall
and a is the distance of two consecutive vortices.
Each vortex moves with uniform velocity U = k

2a
coth(2πb

a
)

parallel to the wall.

Ψ(x, y) = Uy − k

4π
log

cosh(2π
a

(y − b))− cos(2π
a

(x− π))

cosh(2π
a

(y + b))− cos(2π
a

(x− π))
.

−6 −4 −2 0 2 4 6
0

2

4
y

x

This is an a-periodic datum, and the velocity components
obtained are such that u = k/a, v = 0 for y = 0, and
u, v → 0 for y → ±∞.
The initial vorticity is singular w0 =

P
m∈Z

δma,b, where δx,y is

Dirac’s mass.
For NS, we approximate the initial vorticity with a finite sum
of vortex blobs.
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Prandtl’s results

We use the singularity tracking method to trace the singularity
in complex plane, obtaining that singularity forms at time
ts ≈ 0.74 at location x∗ ≈ 3.15 and Y ≈ 2. In (a) the time
evolution of exponential decay of Fourier modes is shown. At
t ≈ 0.74, δ vanishes and a blow up for the first streamwise
derivative occurs (b) in the profile of velocity u at Y = 2.
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Streamline from Prandtl’s calculations are shown. In Fig.(a)
a recirculating eddy is formed and is grown in both stream-
wise and normal length (Fig.(b)). At t = 0.67 a kink seems
to be formed in streamlines (Fig.(c)) and thickens in stream-
wise direction, evolving in a sharp spike at singularity time
(Fig.(d)).
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Navier Stokes results Re=104

a) and b) the streamlines, c) and d) the streamwise pressure
gradient along the surface

∂xpw = − 1

Re
Γy(ȳ)

∂ω

∂y
|y=0,

and the scaled skin friction coefficient (dashed) Cf = −2ωy=0/Re.
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At time t = 0.35 the recirculation region is formed.
At time t = 0.52 it is visible the formation of a local min-
imum in the ∂xpw in correspondence to the formation of a
small spike in the recirculation region.
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Navier Stokes results Re=104

a) and b) the streamlines, c) and d) the streamwise pressure
gradient along the surface

∂xpw = − 1

Re
Γy(ȳ)

∂ω

∂y
|y=0,

and the scaled skin friction coefficient (dashed) Cf = −2ωy=0/Re.
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At time t = 0.35 the recirculation region is formed.
At time t = 0.52 it is visible the formation of a local min-
imum in the ∂xpw in correspondence to the formation of a
small spike in the recirculation region.

The formation of a minimum after the maximum position in
∂xpw accelerates the formation of the spike: the flow across
the boundary is compressed in the streamwise direction and
this compression leads the recirculation region growth in the
normal direction.
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a) and b) The streamlines, c) and d) the streamwise pressure
gradient at the wall and the skin friction coefficient (dashed)
for Navier Stokes solution with Re = 104.
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At time t = 0.74, the recirculation region has split into a series
of corotating eddies in correspondence to the local maxima
of streamwise pressure gradient.
The presence of more recirculating regions becomes more ev-
ident at time t = 0.8.
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a) and b) The streamlines, c) and d) the streamwise pressure
gradient at the wall and the scaled skin friction coefficient
10*Cf (dashed) for Navier Stokes solution at times t = 0.74
and t = 0.8.
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One can see the presence of a series (more) of corotating ed-
dies as in the case of Re = 5 ∗ 104.
The streamwise pressure gradient at the wall shows a more
dramatic behavior with the presence of more pronounced spikes.
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There is no spike formation on the upstream side of the re-
circulation region. Moreover the recirculation region does not
split, and no other recirculation region exists close to the sin-
gularity time (Re=103).
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In (a) it is visible only one large recirculating eddy which
splits at later time t = 1, where a second recirculating region
is visible (b).
In (c)-(d) there is no evidence of forming spike as in the case
of the moderate-high Re numbers.
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Comparison
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Viscous–inviscid (large–scale) interaction is quite early with
respect to theoretical prediction of boundary layer. A kink is
visible at t ≈ 0.52, with increasing streamwise thickness as
Re decreases. This evolves in a spike for Re = 104 − 5 · 104

as in the boundary layer results.

At this stage a new type of (small-scale) interaction is visible.
For Re = 104 − Re = 5 · 104 the recirculation region is
splitting and one can see the formation of a secondary spikes
at t ≈ 0.74.
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The evolution in time of ∂xpw, starting at t = 0.1 with incre-
ments of 0.1.
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For Re = 103 the streamwise pressure gradient remains the
same essentially up to t ≈ 0.2 while for Re = 104 − 5 · 104

the
interaction seems to start later at t ≈ 0.3. Re number in-
creases the interaction begins later.
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The evolution in time of ∂xpw, starting at t = 0.1 with incre-
ments of 0.1.
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For Re = 103 the streamwise pressure gradient remains the
same essentially up to t ≈ 0.2 while for Re = 104 − 5 · 104

the
interaction seems to start later at t ≈ 0.3. Re number in-
creases the interaction begins later.

For Re = 103 there is only one recirculation region close to
singularity time, as in boundary layer solution, but in this case
no spike and no small–scale interaction exists.
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The evolution in time of L∞ norm of the normal pressure
gradient at the wall for Navier Stokes solutions with different
Re numbers. For Re = 103 the variation is more pronounced
at early time cause the viscous-inviscid interaction. At later
time a rapidly growth occurs cause the formation of a small-
scale interaction for Re = 104, 5 · 105.
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The evolution in time of L∞ norm of the normal pressure
gradient at the wall for Navier Stokes solutions with different
Re numbers. For Re = 103 the variation is more pronounced
at early time cause the viscous-inviscid interaction. At later
time a rapidly growth occurs cause the formation of a small-
scale interaction for Re = 104, 5 · 105.
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Lower Re numbers (as 103) characterized by a large–scale in-
teraction acting over the flow: no spike-like behavior in the
solution.

Moderate–high Re (104, 5 ·104) with a small-scale interaction
at a time preceding the formation of singularity in boundary
layer solution.

High Re: no large–scale interaction and the small-scale inter-
action acts at a time close to singularity time.
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Analysis of singularities for NS (VDS initial datum)
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Padé Approximant

Consider the power series f(Z) =
P∞

k=0 ckZ
k, the [L,M] Padé

Approximant to this series is defined as the rational function

P[L,M ] =
a0 + a1Z + · · · + aLZ

L

1 + b1Z + · · · + bMZM
,

with the property that:

f(Z)− P[L,M ] = O
“
Z
L+M+1

”
.

Here we shall use only approximants with L = M .
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Padé Approximant

Consider the power series f(Z) =
P∞

k=0 ckZ
k, the [L,M] Padé

Approximant to this series is defined as the rational function

P[L,M ] =
a0 + a1Z + · · · + aLZ

L

1 + b1Z + · · · + bMZM
,

with the property that:

f(Z)− P[L,M ] = O
“
Z
L+M+1

”
.

Here we shall use only approximants with L = M .

The same idea may be applied to Fourier series with Z = e−ix:

u(x) '
NX

k=−N
ûke

−ikx = P[L,M ] + Q[L,M ] − û0,

where
NX
k=0

ûke
−ikx = P[ 1

2N,
1
2N] + O

“
Z
N+1
”

0X
k=−N

ûke
−ikx = Q[ 1

2N,
1
2N] + O

“
Z
N+1
”
.
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Analysis of singularities for NS (VDS initial datum)
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Analysis of singularities for NS (VDS initial datum)
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Analysis of singularities for NS (VDS initial datum)
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3. Pade Approximant: Viscous Burger’s
Equation

ut + uux = νuxx, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).
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3. Pade Approximant: Viscous Burger’s
Equation

ut + uux = νuxx, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).
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Pade Approximant: ’Dispersion’ Burger’s Equation

ut + uux = εe
iθ
uxx, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).

(Dobrokhotov et al 92 – Senouf, Caflisch and Ercolani 96)
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Pade Approximant: ’Dispersion’ Burger’s Equation

ut + uux = εe
iθ
uxx, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).

(Dobrokhotov et al 92 – Senouf, Caflisch and Ercolani 96)
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Pade Approximant: KdV equation

ut + uux + εuxxx = 0, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).
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Pade Approximant: KdV equation

ut + uux + εuxxx = 0, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).
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Pade Approximant: KdV equation

ut + uux + εuxxx = 0, x ∈ [0, 2π]

u(x, t = 0) = u0(x) = sin(x),

u(0, t) = u(2π, t).
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