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Sine-Gordon (SG) equation:

utt − uxx + sin u = εf(x, t), ε ¿ 1

x ∈ [0, L], u(x + L) = u(x).

ε = 0, u(x, t) = u(Θ1, ...,ΘN), Θi = κix− ωit + Θ0i,

κi are multiples of k0 = 2π/L .

Problem: How to excite high amplitude (u ∼ O(1)) multiphase

waves with a priory given parameters by a small perturbation and

which types of perturbations should be appropriate?

Parameters of control: N , κi, amplitudes

u = 0 → u = u(Θ1, ...,ΘN) + O(ε)



ε = 0

N-phase wave associates with the discrete spectrum of 2N com-

plex egenvalues {E2i−1, E2i}i=N
i=1 in the scattering problem
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”nonsoliton” part of the spectrum: E2i−1 = E∗2i
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0<|E|<1/16 for odd i

|E|>1/16 for even i

u(x,t)=0

Each spectral point ¨ is doubly degenerated and represents closed

gaps (E2i−1 = E2i) indicating inactive degrees of freedom asso-

ciated with phases Θi.

Our goal is to open the initially closed gaps by the perturbations

In our studying we adopt the usual assumption of the perturba-

tion theory: E → E(t) (e.g. I.M. Krichever, 1983)



Autoresonant approach:

f(x, t) = cos(κmx−
∫

Ωm(t)dt), κm =
2π

L
m

Ωm(t) is a slow function of time:

Ωm(t) = Ω0m − α(t− t0)

Ω0m - some resonant frequency for the system.

For small amplitude waves: Ω0m =
√

1 + κ2
m > 0

The number of affected gap is

i =

{
2m , m > 0
−2m + 1 , m ≤ 0

i.e. the perturbation will cross the resonance of the phase with

κi = κm, ωi = Ω0m.



One-phase solutions: N=1

Physical meaning of the autoresonance for weakly nonlinear SG

problem:

L =
1

2
(u2

t −Ω2
0mu2) +

1

24
u4 + εu cos θd, θd = κmx−

∫
Ω(t)dt.

Using the ansatz u = a cos θ, where the amplitude a(t) and the

frequency ω(t) = −θt are slow function of time, one obtains the

averaged over θ Lagrangian

Λ(a, θ, θt) =
1

4
(ω2 −Ω2

0m)a2 +
1

64
a4 − 1

2
εa cosΦ, Φ = θ − θd.

The Lagrangian equations are

Aτ = µ sinΦ, Φτ = τ −A2 + µ
A cosΦ,

where it is used |ω2 −Ω2
0m| ¿ Ω2

0m and rescaling

τ = α1/2t, A = 1
4α−1/4Ω

−1/2
0m a, µ = ε

8(Ω
2
0mα)−3/4



Φττ = −∂Ueff(Φ,A)
∂Φ − Γ(A)Φτ ,

Ueff(Φ, A) = −Φ− 2µA cosΦ− 1
4

µ2

A2 cos 2Φ .

Threshold condition for phase-locking:

µ > µcr = 0.41 → ε > εcr = 3.28Ω
3/2
0m α3/4

(the detailes of the studying can be found also in A.G. Shagalov, J.J. Ras-

mussen, V. Naulin, J.Phys.A: Math.Gen. 42 (2009) 045502)



Numerical aspects:

1. Scattering problem.

Introduce the grid in the interval [0, l]: xn = h n, h = L/M ,

n = 0, ..., M .

Calculation of the transfer matrix

F0 =

(
1 0
0 1

)
, Fn+1 = Fn+

h

2
[U(xn)F

n+U(xn+1)(1+hU(xn))F
n],

∆(E) = tr(FM).

The discrete spectrum {Ej} corresponds to the solutions of the

implicit equation ∆(E) = ±2.



2. Calculation of frequences ωi for the multiphase waves.

(R. Flesch, M.G. Forest, A.Sinha, Physica D 48(1991) 169)

Akj = 4 Re

(∫

αj

EN−kdE
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)
, k, j = 1, ..., N,

Bkj = 2 Re

(∫

αj

EN−kdE

R(E)

)
+ 2i Im

(∫

βj

EN−kdE

R(E)

)
,

where R2(E) = E Π2N
l=1(E − El)

ATC = I ,

ωj =
N∑

k=1

4πi(F−1)kj


Ck1 +

(−1)N−1CkN

16
√

Π2N
l=1El


 , F = C(A−2B) .
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Z < 0 and Z1 > Re(Ej) are arbitrary.

Akj = 4Re




∫ Z

Ej

Φ(E, k)dE√
E − Ej


 E→θ−→ Akj = 8 Re(

√
Z − Ej

∫ 1

0
Φ(θ, k)dθ)

where E = Ej + (Z − Ej)θ
2, θ ∈ [0,1].
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The spectrum of the excited one-phase

traveling wave at t∗ = 3500; ♦ – non-

degenerate spectral points, ¨ – dou-

ble degenerate spectral points; L = 7,

m = 1, Ω01 = 1.344, t0 = 1000 ,

ε = 0.003, α = 0.00003.

The insert shows the shape of the

wave at t = t∗.
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The opening of the driven gap. The

solid line represents the angular width

of the opening gap θ = arg(E4), the

dotted line corresponds to the sta-

tionary wave solution established after

the driving perturbation was switched

off at t = 3500.
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The spectrum of the three-phase wave

at t = 4800 after the development

of the modulational instability. The

point a is the doubly degenerate eigen-

value in the initial stage of the modu-

lational instability at t = 4200; ♦ de-

scribes nondegenerate spectral points

and ¨ represents doubly degenerate

spectral points. The parameters are

L = 7, m = 1, Ω01 = 1.344, t0 =

1000, ε = 0.003, and α = 0.00003.

The insert shows the waveform at time

t = 4800.
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The evolution of the frequencies ωj of

two adjoint waves. Line 1 is ω2(t) of

the driven phase-locked wave, line 2 is

ω3(t), and the dotted lines correspond

to the stationary wave established af-

ter the driving perturbation is switch

off at t = 3500.
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The threshold for autoresonant phase-

locking found numerically (boxes) and

the theoretical prediction ε = 5.1α3/4

(solid line).



Excitation of multiphase wave.

”Step-by-step” scenario: to drive the system successively by the

small amplitude, chirped frequency wave

εf(x, t) = ε cos(κmx−
∫

Ωm(t)dt)

with the different vectors

κm =
2π

L
m .

In the following example of four steps process we will use

successively m = 1,−1,2,0

(i.e. we will successively open the gaps of numbers i = 2,3,4,1)
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The evolution of the frequencies ωi in

four successive stages of excitation of

a four-phase wave.

In stage I, m = 1, ε = 0.003, α =

0.00004, Ω0m = 1.34, and t0 = 800.

In stage II, m = −1, ε = 0.003, α =

0.00004, Ω0m = 1.22, and t0 = 3000.

In stage III, m = 2, ε = 0.003, α =

0.00002, Ω0m = 1.88, and t0 = 6000.

In stage IV, m = 0, ε = 0.002, α =

0.00004, Ω0m = 0.51, and t0 = 8700.

The thick dashed lines show the evo-

lution of the driving frequencies Ωm(t).
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The opening of the driven gaps in

the process of successive excitation

of four phases. The numbers of the

curves correspond to the numbers of

the frequencies in previous figure.
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The spectrum of the four-phase wave

at t = 10000. ♦ represents nondegen-

erate spectral points and ¨ are dou-

bly degenerate spectral points. The

insert shows the actual waveform at

the same time.



Multiphase driving and control of the modulational
instability.

Three-phase drive (m=0,1,-1):

εf(x, t) = ε[1 + r cos(κx)] cos
(∫

Ω(t)dt

)
,

Ω(t) = Ω0 − α(t− t0) ,

where Ω0 = 1 and

r =

{
0 , t < t0
1 , t ≥ t0
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The evolution of the frequencies ωj in

the multi-phase excitation of the pe-

riodic SG breather solution. The pa-

rameters are ε = 0.012, α = 0.00025,

Ω0 = 1, and t0 = 1000
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The opening of the driven gaps in the

process of multi-phase excitation of

the breather solution. The numbers

of the curves correspond to numbers

of the frequencies in the previous fig-

ure.
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(a) The spectrum of the breather so-
lution at t = 4200, ♦ describes the
nondegenerate spectral points and ¨
corresponds to the doubly degenerate
spectral points.

(b) The actual waveform of the breather

(line 1 at t = 3973.2 and line 2 at

t = 3978.4.


