
Infinite-Dimensional Frobenius Manifolds for 2 + 1 Integrable Systems

Guido Carlet · Boris Dubrovin · Luca Philippe Mertens

Abstract We introduce a structure of an infinite-dimensional Frobenius manifold on a subspace in the space

of pairs of functions analytic inside/outside the unit circle with simple poles at 0/∞ respectively. The disper-

sionless 2D Toda equations are embedded into a bigger integrable hierarchy associated with this Frobenius

manifold.
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1 Introduction

1.1 Frobenius manifolds and integrable hierarchies

Frobenius manifolds, originally invented [8] as the geometric set-up for theWDVV equations of two-dimensional

topological field theory [30], proved to be an efficient tool in studying integrable systems of PDEs with one

spatial dimension. For an integrable system of n evolutionary PDEs

∂tui = Ki(u;ux, uxx, . . . ; ǫ), i = 1, . . . , n (1.1)

depending on a small parameter ǫ, the structure of the small dispersion limit ǫ → 0 (if the limit exists)

under very general assumptions of existence of a bihamiltonian structure and a tau-function is completely

described by a suitable n-dimensional Frobenius manifold (see details in [12]). In particular, a basis of the first

integrals of the dispersionless hierarchy can be efficiently computed in terms of the flat sections of the canonical

deformed connection, the bihamiltonian structure of the hierarchy is expressed via the natural flat pencil of

metrics on the Frobenius manifolds etc. (see [9] and references therein). The structure of the full hierarchy

(1.1) is completely determined by the Frobenius manifold along with n functional parameters (functions of

one variable) called central invariants [11].

Our goal is to extend the above programme to integrable PDEs with two spatial dimensions (the so-called

2+1 systems). In particular we expect that the technique of Frobenius manifolds will be instrumental in

the description of a complete set of first integrals of integrable dispersionless systems also for the 2+1 case

thus giving a way to studying the properties of general solutions to these systems under very mild analytic

assumptions. It might also be helpful in the classification of various dispersive deformations of the dispersionless

2+1 systems according to the scheme of [11].
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In the present paper we consider just one example of a 2+1 integrable system, namely, the 2D Toda

equation

∂2t un − ∂2yun = eun+1 − 2eun + eun−1 . (1.2)

In this case we have two spatial variables: a continuous variable y and a discrete one n ∈ Z. The 1+1 reduction

∂yun = 0 of (1.2) gives the classical Toda lattice

q̈n = eqn+1−qn − eqn−qn−1 , un = qn+1 − qn

i.e., an infinite system of points on the line with exponential interaction of the neighbors. The dispersionless

limit is the PDE

utt − uyy =
(

eu
)

xx
(1.3)

for the function u = u(x, y, t) obtained by interpolating

un(y, t) = u(ǫ n, y, t)

rescaling

y 7→ ǫ y, t 7→ ǫt

and then setting ǫ → 0.

1.2 2D Toda lattice as an integrable hierarchy with an infinite number of dependent variables

In order to develop an appropriate Frobenius manifolds technique we embed (1.2), following K.Ueno and

K.Takasaki [28], into a hierarchy of an infinite number of flows associated with a pair of semi-infinite difference

operators

L = ∆+ u0(n) + u−1(n)∆
−1 + u−2(n)∆

−2 + . . .

(1.4)

L̄ = ū−1(n)∆
−1 + ū0(n) + ū1(n)∆+ ū2(n)∆

2 + . . . .

Here ∆ is the shift operator

∆fn = fn+1.

The hierarchy can be written in the familiar Lax form

∂L

∂sk
=
[

(Lk)+, L
]

,
∂L̄

∂sk
=
[

(Lk)+, L̄
]

(1.5)

∂L

∂s̄k
=
[

(L̄k)−, L
]

,
∂L̄

∂s̄k
=
[

(L̄k)−, L̄
]

k ≥ 1. Here the positive/negative parts of a difference operator

M =
∑

m∈Z

am∆m

are defined by

M+ =

∞
∑

m=0

am∆m

M− =

−∞
∑

m=−1

am∆m.

In particular the coefficient

un = log ū−1(n)
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as a function of t = s1 − s̄1, y = s1 + s̄1 satisfies (1.2).

The hierarchy (1.5) possesses all usual properties of 1+1 systems: the flows (1.5) commute pairwise and

admit a bihamiltonian description [5]. However, it contains an infinite number of unknown functions

ui(n), ūj(n), i ≤ 0, j ≥ −1

of the lattice variable n. Because of this one expects that an infinite dimensional Frobenius manifold must be

brought under consideration.

Let us repeat that the Frobenius manifold structure is intrinsically involved in the description of the

dispersionless limit of the hierarchy. The latter has been thoroughly studied in [25]. One has to replace the

difference operators by their symbols; the coefficients ui and ūj become functions of the continuous spatial

variable x (cf. the above interpolation procedure); replacing in (1.5) the commutators of operators by the

Poisson brackets of their symbols one obtains the flows of the dispersionless limit of the hierarchy (see eqs.

(3.5) below). These equations have been extensively studied [3,17,18,20,24,27,31] after the discovery, due

to M.Mineev-Weinstein, P.B.Wiegmann and A.Zabrodin [22,29], of a remarkable connection between the

dispersionless 2D Toda hierarchy and the theory of conformal maps.

In our construction of the infinite-dimensional Frobenius manifold associated with the 2D Toda hierarchy

we have to work with the same symbols of the pair of Lax operators L, L̄. This is the main novelty with

respect to the already widely accepted scheme of [7] that suggests to use the symbol of the Lax operator as the

“Landau – Ginzburg superpotential” in order to construct the Frobenius manifold (aka the small phase space

of the two-dimensional topological field theory). For the 2D Toda case one has to deal with a pair of “Landau

– Ginzburg superpotentials” treating them on equal footing. The constructions heavily rely on the suitably

chosen analytic properties of these symbols that we will now describe in order to proceed to the formulation

of main results of the paper.

1.3 Main results. A Frobenius manifold for the 2D Toda lattice

Let S1 be the unit circle |z| = 1 on the complex z-plane. Denote D0 and D∞ resp. the inner and outer parts of

S1 on the Riemann sphere. Let H(D0), resp. H(D∞) be the space of functions holomorphic on the closed disk

D0, resp. D∞, that is, functions holomorphic on D0/D∞ admitting analytic continuation into bigger disks

|z| < 1 + ρ or |z| > 1− ρ respectively

for some positive ρ. Furthermore denote Ḣ(D0) and Ḣ(D∞) extensions of these spaces allowing for a function

to have simple poles at z = 0 and z = ∞ resp. Functions in Ḣ(D∞) will be denoted by

λ(z) = u1z + u0 +
u−1

z
+ . . . ∈ Ḣ(D∞), (1.6)

functions in Ḣ(D0) will be denoted1 by

λ̄(z) =
ū−1

z
+ ū0 + ū1z + . . . ∈ Ḣ(D0). (1.7)

Define an infinite-dimensional manifold M as an affine subspace in the direct sum

M =
{

(λ, λ̄) ∈ Ḣ(D∞)⊕ Ḣ(D0) |u1 = 1
}

. (1.8)

The tangent space to M at any point is isomorphic to the direct sum

TM = H(D∞)⊕ Ḣ(D0) (1.9)

1 In this paper bar never stands for complex conjugation unless the opposite is explicitly stated. The coefficients of
the Laurent expansions (1.6) and (1.7) can be considered as complex coordinates on the spaces Ḣ(D∞) and Ḣ(D0)
respectively.
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identifying first order linear differential operators with the derivatives of the functions λ(z), λ̄(z)

∂ 7→ (∂λ(z), ∂λ̄(z)) ∈ H(D∞)⊕ Ḣ(D0) = TM (1.10)

(the differentiation with z = const). Similarly, the cotangent space is identified with

T ∗M = Ḣ(D0)⊕H(D∞). (1.11)

It is understood that the duality between the tangent and cotangent spaces is established by the residue

pairing

〈ω̂, α̂〉 =
1

2πi

∮

|z|=1

[α(z)ω(z) + ᾱ(z)ω̄(z)] dz, α̂ = (α, ᾱ) ∈ TM, ω̂ = (ω, ω̄) ∈ T ∗M. (1.12)

The following linear functionals will be useful in computations

〈dλ(p), α̂〉 = α(p), 〈dλ̄(p), α̂〉 = ᾱ(p), α̂ = (α, ᾱ) ∈ TM. (1.13)

Using Cauchy integral formula one obtains the following realization of these one-forms as elements of the space

T ∗M = Ḣ(D0)⊕H(D∞)

dλ(p) =

(

p

z

1

p− z
, 0

)

, |z| < |p|

(1.14)

dλ̄(p) =

(

0,
z

p

1

z − p

)

, |z| > |p|.

We are now ready to define a Frobenius manifold structure on a suitable infinite dimensional submanifold

M0 of M (see below). Recall that a Frobenius manifold must be equipped with a Frobenius algebra structure

on the tangent bundle such that the associated nondegenerate symmetric invariant bilinear form < , > is a

metric of vanishing curvature and the product of flat vector fields admits the representation

< ∂1 · ∂2, ∂3 >= ∂1∂2∂3F. (1.15)

Here ∂1, ∂2, ∂3 are three arbitrary flat vector fields, the function F is called the potential of the Frobenius

manifold. Besides the above conditions there must be a flat unit vector field and an Euler vector field involved

in the quasihomogeneity condition (see details in [9]).

Due to nondegeneracy of the invariant bilinear form, the induced isomorphism between tangent and cotan-

gent bundles defines a Frobenius algebra structure also on the cotangent spaces. In our construction we begin

just with the Frobenius algebra structure on T ∗M .

Define a symmetric inner product and a multiplication on the cotangent space T ∗M at the point (λ, λ̄) by

< dα(p), dβ(q) >∗=
p q

p− q

(

ǫ(α)β′(q)− ǫ(β)α′(p)
)

(1.16)

and

dα(p) · dβ(q) =
p q

p− q

[

α′(p) dβ(q)− β′(q) dα(p)
]

. (1.17)

Here dα(p), dβ(q) stand for one of the symbols dλ(p) or dλ̄(p), the signs ǫ(α), ǫ(β) are defined as follows

ǫ(α) = 1 if α = λ and ǫ(α) = −1 if α = λ̄.

As any 1-form ω̂ = (ω(z), ω̄(z)) can be represented as a linear combination of the 1-forms dλ(p), dλ̄(p)

ω̂ =
1

2πi

∮

|p|=1

(

ω(p)dλ(p) + ω̄(p)dλ̄(p)
)

dp,

the inner product and the multiplication extend onto the entire cotangent bundle T ∗M .
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Proposition 1.1 For any point (λ, λ̄) ∈ M the multiplication (1.17) defines on T ∗
(λ,λ̄)

M a structure of a

commutative associative algebra with an invariant bilinear form (1.16). The latter does not degenerate on the

open subset of M defined by the conditions

ū−1 6= 0, λ′(z) + λ̄′(z) 6= 0 for |z| = 1. (1.18)

We will now describe a submanifold M0 ⊂ M on which the Frobenius structure will be introduced. This

will be an open subspace M0 ⊂ M defined by the following conditions. Denote

w(z) = λ(z) + λ̄(z). (1.19)

First, for (λ, λ̄) ∈ M0 one must have w′(z) 6= 0 for any z ∈ S1 and the image

Γ = w(S1)

of the unit circle is required to be a non-selfintersecting positively oriented closed curve encircling the origin

w = 0. Second, we impose the condition ū−1 6= 0. The manifold M0 is fibered over the space Mred of

parametrized simple analytic curves

M0 ∋ (λ(z), λ̄(z)) 7→ {z → w(z) | |z| = 1} ∈ Mred (1.20)

with a two-dimensional fiber. One can choose

u = log ū−1, v = ū0 (1.21)

as coordinates on the fiber.

Theorem 1.2 The above formulae (1.16), (1.17) define on M0 a structure of a semisimple infinite-dimensional

Frobenius manifold with the unit vector

e = (−1, 1) ∈ TM, (1.22)

the Euler vector field

E =
(

λ(z)− z λ′(z), λ̄(z)− z λ̄′(z)
)

∈ T(λ,λ̄)M (1.23)

and the potential

F =
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

w(z1)

z1

w(z2)

z2
log

z2 − z1
z2

dz1 dz2

(1.24)

+
1

2
(ū0 − u0)

[

1

2πi

∮

|z|=1

w(z)

z
log

w(z)

z
dz − u0 − ū0

]

+
1

2
ū20 log ū−1 + ū−1 + u−1 + ū−1ū1.

Let us describe the canonical coordinates [9] on the semisimple part of the Frobenius manifold M0. Consider

the analytic curve

Σ := {S1 ∋ p 7→
λ′(p)

λ′(p) + λ̄′(p)
}. (1.25)

Denote M0
s s ⊂ M0 the subset consisting of pairs (λ, λ̄) such that the curve Σ is smooth non-self intersecting.

For a given curve Σ introduce the following functional on M0
s s depending on the point of the curve

uσ :=
[

σ λ̄(p) + (σ − 1)λ(p)
]

p=p(σ)
, σ ∈ Σ (1.26)

where p = p(σ) ∈ S1 is determined from the equation

[

σ λ̄′(p) + (σ − 1)λ′(p)
]

p=p(σ)
= 0, σ ∈ Σ. (1.27)

Proposition 1.3 The functionals uσ are canonical coordinates on M0
s s.
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Remark 1.4 For the dispersionless limit of the 1+1 Lax equations the well known prescription suggests to

take the critical values of the symbol of the Lax operator in order to obtain the Riemann invariants (aka the

canonical coordinates) of the dispersionless equations. This rule extends also to the 1+1 Whitham equations,

where the Riemann invariants are given by the ramification points of the spectral curve [15]. Our procedure

(1.26), (1.27) looks very similarly. The main difference is that now the Riemann invariants are labeled by a

continuous parameter running through the curve Σ.

The proofs of Propositions 1.1, 1.3 and Theorem 1.2 will be given in Section 2. In particular, an expression

for the metric induced by (1.16) on the tangent bundle is given in the formula (2.13) below, the flat coordinates

for the metric can be found in (2.16) - (2.17), the symmetric trilinear form < ∂1 · ∂2, ∂3 > on TM0 (i.e., the

would-be triple correlator [30] of the primary fields of the associated 2D topological field theory with an infinite

number of primaries) is written in (2.30).

Recall [9] that on the cotangent bundle of an arbitrary Frobenius manifold there exists another important

symmetric bilinear form defined by the formula

(ω1, ω2)∗ = iE(ω1 · ω2) (1.28)

(the so-called intersection form of the Frobenius manifold). It does not degenerate outside a closed analytic

subset; the curvature of the induced metric vanishes. For the case under consideration the intersection form

admits the following explicit expression.

Proposition 1.5 The intersection form of the Frobenius manifold M0 is given by the formula

(dα(p), dβ(q))∗ =
p q

p− q

[

α′(p)β(q)− β′(q)α(p)
]

+ p q α′(p)β′(q). (1.29)

It does not degenerate on the open subset of M0 defined by the conditions

λ′(z) 6= 0, λ̄′(z) 6= 0, λ(z)λ̄′(z)− λ̄(z)λ′(z) 6= 0 for |z| = 1. (1.30)

On this subset it defines a metric of zero curvature given by the following inner product on the tangent space

(∂1, ∂2) =
1

2πi

∮

|z|=1

(

∂1λ
λ′ − ∂1λ̄

λ̄′

)(

∂2λ
λ′ − ∂2λ̄

λ̄′

)

λ
λ′ −

λ̄
λ̄′

dz

z2
. (1.31)

The notations in the formula (1.29) are similar to those in (1.16). The complement locus to the subset

(1.30) is the discriminant of the infinite-dimensional Frobenius manifold.

1.4 The infinite-dimensional Frobenius manifold and the extended dispersionless 2D Toda

hierarchy

The flat pencil of metrics (1.16) and (1.29) plays an important role in the bihamiltonian formulation of the

associated integrable hierarchy. Recall that the dispersionless integrable hierarchy associated with a given

n-dimensional Frobenius manifold M (the so-called Principal Hierarchy) is an infinite family of pairwise

commuting flows on the (formal) loop space

LM :=
{

S1 → M
}

.

All the equations of the hierarchy are evolutionary PDEs with one spatial and one time variable. In the flat

coordinates v1, . . . , vn the equations of the lowest level of the hierarchy (the so-called primary flows) can be

written in the form

∂vγ

∂tα,0
=

n
∑

β=1

cγ
αβ

(v)
∂vβ

∂x
, γ = 1, . . . , n (1.32)



7

(the number α of this equation may take values from 1 to n). Here cγ
αβ

(v) are the structure constants of the

Frobenius algebra on TM . The equations ∂vγ/∂tα,p = . . . of the higher levels p > 0 are obtained by a suitable

recursion procedure (see details in [12,9]).

Thus, an infinite number of primary flows must be constructed for an infinite-dimensional Frobenius

manifold. Only two of these flows are covered by the dispersionless limit of the 2D Toda equations (1.5),

namely,
∂

∂s1
= −

∂

∂t0,0
+

∂

∂tu,0
,

∂

∂s̄1
= −

∂

∂tu,0
.

All other primary flows have to be constructed. They are described in the following

Theorem 1.6 The primary flows of the Principal Hierarchy associated with the infinite-dimensional Frobenius

manifold of Theorem 1.2 have the following form

∂λ(z)

∂tα,0
=

1

α+ 1

{

(

wα+1(z)
)

<0
, λ(z)

}

,
∂λ̄(z)

∂tα,0
= −

1

α+ 1

{

(

wα+1(z)
)

≥0
, λ̄(z)

}

α ∈ Z, α 6= −1,

(1.33)

∂λ(z)

∂t−1,0
=

{(

log
w(z)

z

)

<0

+ log z, λ(z)

}

,
∂λ̄(z)

∂t−1,0
= −

{

(

log
w(z)

z

)

≥0

, λ̄(z)

}

∂

∂tv,0
=

∂

∂x
∂

∂tu,0
= −

∂

∂s̄1

All these flows are symmetries of the dispersionless limit (3.5) of the 2D Toda hierarchy.

In these formulae the dispersionless Lax representation of the primary flows is given, the curly bracket

stands for the standard Poisson bracket on the cylinder (z, x) ∈ S1 × R:

{f(z, x), g(z, x)} = z
∂f

∂z

∂g

∂x
− z

∂g

∂z

∂f

∂x
.

The proofs of the Proposition 1.5 and the Theorem 1.6 are given in Section 3 where we will also add more

explanations about connections between our infinite-dimensional Frobenius manifold and the 2D Toda lattice.

We also construct an analogue of the Riemann invariants for the primary flows (1.33):

Proposition 1.7 The primary flows (1.33) in the canonical coordinates (1.26) take the following diagonal

form

∂uσ
∂ti,0

= Ai(σ)
∂uσ
∂x

, i ∈ Z, σ ∈ Σ

(1.34)

Ai(σ) = −p(σ)
[

σ (wi(p)w′(p))≥0 + (σ − 1) (wi(p)w′(p))≤−1

]

p=p(σ)

∂uσ
∂tu,0

= Au(σ)
∂uσ
∂x

, Au(σ) =
eu

p(σ)
.

The explicit realization of higher flows of the Principal Hierarchy associated with the Frobenius manifold

M0 will be given in a separate publication.

Remark 1.8 In [4,19] it was shown that the logarithm of the tau-function τ (s, s̄) of any solution to the dis-

persionless 2D Toda hierarchy satisfies the WDVV equation. This gives solutions to WDVV depending on an

infinite number of variables. A particular tau-function admits an elegant realization on the space of simply

connected plane domains bounded by simple analytic contours assuming the possibility to locally parametrize

the domains by their exterior harmonic moments (see also [26]). Such an assumption has been rigorously

justified in [13] for the class of polynomial boundary curves in which case all harmonic moments but a finite

number are equal to zero. A connection between our solution to WDVV given in (1.24) and the one of [4,19]

has to be clarified yet. It is clear however that the two WDVV solutions are defined on different spaces.
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Remark 1.9 In [1] M.Adler and P. van Moerbeke proposed an extension of the 2D Toda hierarchy by adding

the flows with the Lax representation of the form

∂L

∂sij
= [P+, L] ,

∂L̄

∂sij
= −

[

P−, L̄
]

(1.35)

with

P = LiL̄j , i, j ≥ 0. (1.36)

They argued that these flows, if well-defined, should commute pairwise. Note that the dispersionless limits of

these flows make sense on our infinite-dimensional Frobenius manifold since the products λi(z)λ̄j(z) are well

defined for all nonnegative integers i, j. One can check that all these dispersionless flows are linear combinations

of the flows of the Principal Hierarchy associated with the Frobenius manifold M0.

2 Construction of a Frobenius manifold

Let us begin with the proof of Proposition 1.1. Define a multiplication on the cotangent space T ∗
(λ,λ̄)

M by the

following formula

ω̂1 · ω̂2 = (2.1)

= z2
(

ω1(λ
′ω2 + λ̄′ω̄2)≥−1 + ω2(λ

′ω1 + λ̄′ω̄1)≥−1 − [λ′ω1ω2 + λ̄′(ω1ω̄2 + ω̄1ω2)]≥−3,

−ω̄1(λ
′ω2 + λ̄′ω̄2)≤−2 − ω̄2(λ

′ω1 + λ̄′ω̄1)≤−2 + [λ̄′ω̄1ω̄2 + λ′(ω1ω̄2 + ω̄1ω2)]≤−2

)

.

Here we use the notations (f)≥k and (f)≤k for the projections of a function

f = f(z) =
∑

n∈Z

fnz
n

analytic on a neighborhood of S1 defined by

(f)≥k =
∑

n≥k

fnz
n =

zk

2πi

∮

|z|<|ζ|

ζ−kf(ζ)

ζ − z
dζ (2.2)

(f)≤k =
∑

n≤k

fnz
n = −

zk+1

2πi

∮

|z|>|ζ|

ζ−k−1f(ζ)

ζ − z
dζ (2.3)

for a given integer k. Observe the simple identity

∮

dz f(z) (g(z))≥k =

∮

dz (f(z))≤−k−1 g(z) (2.4)

often used in subsequent calculations.

Lemma 2.1 The product of the linear functionals of the form (1.13) with respect to the multiplication (2.1)

coincides with (1.17).

Proof Let us compute the product of 1-forms

ω̂1 = dλ(p), ω̂2 = dλ(q).

In this case the product ω̂1 · ω̂2 ∈ Ḣ(D0). We have

(

λ′ω2

)

≥−1
=

1

2πiz

∮

|z|<|ζ|<|q|

q λ′(ζ)

(q − ζ)(ζ − z)
dζ = −

q

z

[

resζ=q + resζ=∞

] λ′(ζ)

(q − ζ)(ζ − z)
dζ =

q

z

λ′(q)

q − z
,
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(

λ′ω1ω2

)

≥−3
=

1

2πiz3

∮

|z|<|ζ|<min(|p|,|q|)

p q ζ λ′(ζ)

(p− ζ)(q − ζ)(ζ − z)
dζ

= −
pq

z3
[

resζ=p + resζ=q + resζ=∞

] ζ λ′(ζ)

(p− ζ)(q − ζ)(ζ − z)
dζ =

pq

z3

[

p λ′(p)

(q − p)(p− z)
+

q λ′(q)

(p− q)(q − z)

]

.

So

ω̂1 · ω̂2 = z2
(

ω1

(

λ′ω2

)

≥−1
+ ω2

(

λ′ω1

)

≥−1
−
(

λ′ω1ω2

)

≥−3
, 0
)

= pq

(

λ′(q)

(p− z)(q − z)
+

λ′(p)

(p− z(q − z)
−

1

z

[

p λ′(p)

(q − p)(p− z)
+

q λ′(q)

(p− q)(q − z)

]

, 0

)

=

(

p q

p− q

[

λ′(p)
q

z

1

q − z
− λ′(p)

p

z

1

p− z

]

, 0

)

=
p q

p− q

[

λ′(p) dλ(q)− λ′(q) dλ(p)
]

.

Next, for the product of ω̂1 = dλ(p), ω̂2 = dλ̄(q) we have the following expression

ω̂1 · ω̂2 = z2
(

ω1

(

λ̄′ω̄2

)

≥−1
−
(

λ̄′ω1ω̄2

)

≥−3
,−ω̄2

(

λ′ω1

)

≤−2
+
(

λ′ω1ω̄2

)

≤−2

)

.

The computation similar to the one above gives

(

λ̄′ω̄2

)

≥−1
=

1

2πiz q

∮

max(|q|,|z|)<|ζ|

ζ2λ̄′(ζ)

(ζ − q)(ζ − z)
dζ =

q2λ̄′(q)− z2λ̄′(z)

q z(q − z)
,

(

λ̄′ω1ω̄2

)

≥−3
=

1

2πiz

p

q

∮

max(|q|,|z|)<|ζ|<|p|

ζ2λ̄′(ζ)

(p− ζ)(ζ − q)((ζ − z)
dζ

=
1

z3
p

q

[

resζ=q + resζ=z + resζ=0

] ζ2λ̄′(ζ)

(p− ζ)(ζ − q)((ζ − z)
dζ =

1

z3
p

q

[

q3λ̄′(q)

(p− q)(q − z)
+

z3λ̄′(z)

(p− z)(z − q)

]

.

Putting these two terms together and multiplying by z2 we arrive at the expression for the first component of

the product

= −
p q

p− q
λ̄′(q)

p

z

1

p− z
= −

p q

p− q
λ̄′(q) dλ(p).

For the second component the computation is similar

(

λ′ω1

)

≤−2
= −

p

2πiz

∮

|ζ|<min(|z|,|p|)

λ′(ζ)

(p− ζ)(ζ − z)
dζ =

p

z

[

resζ=p + resζ=z + resζ=∞

] λ′(ζ)

(p− ζ)(ζ − z)
dζ

=
p

z

λ′(z)− λ′(p)

p− z
,

(

λ′ω1ω̄2

)

≤−2
= −

1

2πiz

p

q

∮

|q|<|ζ|<min(|p|,|z|)

ζ λ′(ζ)

(p− ζ)(ζ − q)(ζ − z)
dζ

=
p

q

1

z

[

resζ=p + resζ=z + resζ=∞

] ζ λ′(ζ)

(p− ζ)(ζ − q)(ζ − z)
dζ =

p

q

1

z(p− z)

[

z λ′(z)

z − q
−

p λ′(p)

p− q

]

.

Putting these together and multiplying by z2 we arrive at

z2
(

−ω̄2

(

λ′ω1

)

≤−2
+
(

λ′ω1ω̄2

)

≤−2

)

=
p q

p− q
λ′(p)

z

q

1

z − q
=

p q

p− q
λ′(p) dλ̄(q).

We have proved that

dλ(p) · dλ̄(q) =
p q

p− q

[

λ′(p) dλ̄(q)− λ̄′(q) dλ(p)
]

.

The computation of the product dλ̄(p) · dλ̄(q) is similar. We leave it as an exercise for the reader.

Lemma 2.2 For any (λ, λ̄) ∈ M the formula (2.1) defines on T ∗
(λ,λ̄)M a structure of a commutative associa-

tive algebra.
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Proof Commutativity of the product (2.1) is obvious. In order to prove associativity let us compute the

product of three 1-forms of the form (1.13). An easy computation shows that this product can be written in

the following manifestly symmetric way

[dα(p) · dβ(q)] · dγ(r) = (2.5)

=
p r

p− r

p q

p− q
β′(q)γ′(r) dα(p) +

q p

q − p

q r

q − r
α′(p)γ′(r) dβ(q)

+
r p

r − p

r q

r − q
α′(p)β′(q) dγ(r).

Remark 2.3 On an open subset of M defined by the condition

ū−1 6= 0

the algebra (2.1) will have a unit

e∗ =

(

0,
1

ū−1

)

. (2.6)

Remark 2.4 The following formula generalizing (2.5) can be easily derived by induction:

dα1(p1) · . . . · dαn(pn) =

n
∑

i=1

α′
1(p1)

p−1
i − p−1

1

α′
2(p2)

p−1
i − p−1

2

. . . dαi(pi) . . .
α′
n(pn)

p−1
i − p−1

n

. (2.7)

Introduce a linear map

η : T ∗
(λ,λ̄)M → T(λ,λ̄)M

by the formula

η(ω̂) = z2
(

(λ′ω + λ̄′ω̄)≤−2 − λ′(ω − ω̄)≤−2, (λ
′ω + λ̄′ω̄)≥−1 + λ̄′(ω − ω̄)≥−1

)

(2.8)

ω̂ = (ω, ω̄) ∈ T ∗
(λ,λ̄)M.

Lemma 2.5 The associated bilinear form on T ∗
(λ,λ̄)

M

< ω̂1, ω̂2 >∗= 〈ω̂1, η(ω̂2)〉, ω̂1, ω̂2 ∈ T ∗
(λ,λ̄)M (2.9)

coincides with (1.16).

Proof is obtained by a simple computation, similar to the one in the proof of Lemma 2.1.

Lemma 2.6 The bilinear form (1.16) is invariant with respect to the multiplication (1.17):

< ω̂1 · ω̂2, ω̂3 >∗=< ω̂1, ω̂2 · ω̂3 >∗ . (2.10)

for any ω̂1, ω̂2, ω̂3 ∈ T ∗
(λ,λ̄)

M .

Proof As in the proof of Lemma 2.2 let us compute the inner product (2.10) choosing the three 1-forms ω̂1,

ω̂2, ω̂3 among dλ(p) and dλ̄(p). Using the formula (2.8) one easily obtains the following symmetric expression

< dα(p) · dβ(q), dγ(r) >∗=

= −p q r

[

ǫ(α)β′(q)γ′(r)p

(p− q)(p− r)
+

ǫ(β)α′(p)γ′(r)q

(q − p)(q − r)
+

ǫ(γ)α′(p)β′(q)r

(r − p)(r − q)

]

.

Let us now prove nondegeneracy of the symmetric bilinear form (1.16) on the subspace defined in (1.18).

Recall that on this subspace one has w′(z) ≡ λ′(z) + λ̄′(z) 6= 0 for z ∈ S1. Moreover, the coefficient ū−1 does

not vanish.
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Lemma 2.7 For any (λ, λ̄) satisfying (1.18) the linear operator (2.8) is an isomorphism.

Proof We need to solve the equation

η(ω̂) = α̂, α̂ = (α, ᾱ) ∈ T(λ,λ̄)M,

which is equivalent to the following system

α = z2(λ′ω + λ̄′ω̄)≤−2 + z2λ′(ω̄)≤−2,

ᾱ = z2(λ′ω + λ̄′ω̄)≥−1 + z2λ̄′ω − z2λ̄′(ω̄)≥−1,

where we have used the assumptions α, ω̄ ∈ H(D∞) and ᾱ, ω ∈ Ḣ(D0). It easily follows that

α+ ᾱ = z2w′(ω + ω̄≤−2). (2.11)

Dividing by z2w′ and taking suitable projections one obtains

ω =
1

z2

(

α(z) + ᾱ(z)

w′(z)

)

≥1

(2.12)

ω̄ =
1

z2

(

α(z) + ᾱ(z)

w′(z)

)

≤2

+
1

ū−1

(

ᾱ−1

z
+ ᾱ0

)

.

Corollary 2.8 For (λ, λ̄) ∈ M satisfying (1.18) the non-degenerate symmetric bilinear form (1.16) on T ∗
(λ,λ̄)

M

induces a non-degenerate symmetric bilinear form on T(λ,λ̄)M . The latter can be written in the following form

< ∂1, ∂2 >=
1

2πi

∮

|z|=1

∂1w(z) ∂2w(z)

z2w′(z)
dz − resz=0

∂1ℓ(z) ∂2ℓ(z)

z2ℓ′(z)
dz (2.13)

for any two tangent vectors ∂1, ∂2 ∈ T(λ,λ̄)M where

ℓ(z) = z + v +
eu

z
. (2.14)

From the above lemmata it immediately follows the validity of the Proposition 1.1.

Let us now proceed to the proof of Theorem 1.2. Recall that the subspace M0 ⊂ M is defined by the

following conditions. First, for (λ, λ̄) ∈ M0 one must have w′(z) 6= 0 for any z ∈ S1. Moreover, the image

Γ = w(S1)

of the unit circle is required to be a non-selfintersecting positively oriented closed curve. Second, we impose

the condition ū−1 6= 0. It will also be technically convenient to assume that the curve Γ encircles the origin

w = 0.

The function w(z) = λ(z)+ λ̄(z) is holomorphic on some neighborhood of the unit circle S1. The functions

λ(z), λ̄(z) can be reconstructed from the triple w(z), ū0, ū−1 by the following formulae

λ(z) = (w(z))≤0 + z − ū0 −
ū−1

z
(2.15)

λ̄(z) = (w(z))≥1 − z + ū0 +
ū−1

z
.

So, the coefficients wn of the Laurent expansion

w(z) =
∑

n∈Z

wnz
n
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along with ū0 and ū−1 can be used as an alternative system of coordinates on the manifold M . The symmetric

bilinear form on tangent spaces to the manifold M0 will be called metric on this manifold. We begin with

proving that this metric is flat. To this end we will introduce a system of flat coordinates for this metric. They

are obtained from the following procedure. Consider the inverse function

z = z(w) : Γ → S1.

It is holomorphic on some neighborhood of the curve Γ and satisfies

|z(w)|w∈Γ = 1.

Introduce the Riemann–Hilbert factorization of this function

z(w) = f−1
0 (w)f∞(w) for w ∈ Γ (2.16)

where the functions f0(w) and f∞(w)/w are holomorphic and non-vanishing inside/outside the curve Γ (in

both cases holomorphicity can be assumed in a bigger domain containing the curve itself). The factorization

will be uniquely defined by normalizing

f∞(w) = w +O(1), |w| → ∞.

Denote tn the coefficients of the Taylor expansions of the logarithms of these functions

log f0(w) = −t0 − t1w − t2w
2 − . . . , |w| → 0

(2.17)

log
f∞(w)

w
=

t−1

w
+

t−2

w2
+ . . . , |w| → ∞.

These coefficients along with

v = ū0, u = log ū−1 (2.18)

constitute one more system of coordinates (t, u, v) on M0. In order to compute the curve in M0 obtained by

variation of the coordinate tk 7→ tk +∆tk one has to invert the function z(w)e∆tk wk

and then restrict it to

the unit circle. This implies the obvious formula

∂

∂tn
z(w) = wnz(w) (2.19)

and hence
∂

∂tn
w(z) = −z wn(z)w′(z) (2.20)

(note that in the formula (2.19) we differentiate keeping w = const while in (2.20) z = const). Therefore

∂λ(z)

∂tn
= −z

[

wn(z)w′(z)
]

≤−1

(2.21)

∂λ̄(z)

∂tn
= −z

[

wn(z)w′(z)
]

≥0
.

Moreover,

∂λ(z)

∂v
= −1,

∂λ̄(z)

∂v
= 1

(2.22)

∂λ(z)

∂u
= −

eu

z
,

∂λ̄(z)

∂u
=

eu

z
.

Lemma 2.9 The Gram matrix of the metric (2.9) becomes constant in the coordinates (t, u, v), namely
〈

∂

∂tk
,
∂

∂tl

〉

= δk+l,−1,

〈

∂

∂u
,
∂

∂v

〉

= 1, (2.23)

all other inner products vanish.
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Proof Let us use the formula (2.13). With the help of (2.20) we obtain

〈

∂

∂tk
,
∂

∂tl

〉

=
1

2πi

∮

wk+lw′dz =
1

2πi

∮

wk+ldw = δk+l,−1.

The second part of the formula is proved in a similar way.

Remark 2.10 Note the identity

1

2πi

∮

w(z)

z
log

w(z)

z
dz =

1

2

∑

i+j=−1

titj − t−1 (2.24)

from which the convergence of the infinite sum in the right hand side follows. Another useful formula:

u0 = −t−1 − v. (2.25)

Lemma 2.11 The function (1.24) on M0 coincides with

F (t, u, v) =
1

2

1

(2πi)2

∮

Γ

∮

Γ

Li3

(

z(w1)

z(w2)

)

dw1 dw2 +
1

2πi

∮

Γ

(

eu

z(w)
− z(w)

)

dw

(2.26)

+
1

4πi

(

v +
1

2
t−1

)

∮

Γ

(

log
z(w)

w

)2

dw +
1

2
v2u− eu.

Recall that the tri-logarithm is defined by its Taylor expansion

Li3(x) =
∑

k≥1

xk

k3
, |x| < 1.

The double integral must be regularized in such a way that |z(w1)| < |z(w2)|.

Proof Let us begin with the first line of the formula (1.24) for the potential F represented as

−
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

w(z1)

z1

w(z2)

z2
Li1

(

z1
z2

)

dz1 dz2. (2.27)

In this computation we will use the identity

z
d

dz
Lin+1(z) = Lin(z) (2.28)

for polylogarithms

Lin(z) =
∑

k≥1

xk

kn
.

Note that, in particular

Li1(z) = − log(1− z). (2.29)

Replacing the integration variable z 7→ w and integrating twice by parts we get, with the help of (2.28)

−
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

w(z1)

z1

w(z2)

z2
Li1

(

z1
z2

)

dz1 dz2

= −
1

2

1

(2πi)2

∮ ∮

|z(w1)|<|z(w2)|

w1 w2 Li1

(

z(w1)

z(w2)

)

z′(w1)

z(w1)

z′(w2)

z(w2)
dw1 dw2

=
1

2

1

(2πi)2

∮ ∮

|z(w1)|<|z(w2)|

Li3

(

z(w1)

z(w2)

)

dw1 dw2.
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This gives the first term in (2.26). Next, since ū0 = v, using (2.25) we derive that ū0 + u0 = −t−1. So we will

transform the integral in the second line of (1.24) as follows:

1

2πi

∮

w(z)

z
log

w(z)

z
dz − (u0 + ū0) = −

1

2πi

∮

w log

(

z(w)

w

)

z′(w)

z(w)
dw + t−1

−
1

2πi

∮

w log

(

z(w)

w

)[

z′(w)

z(w)
−

1

w

]

dw =
1

2

1

2πi

∮
(

log
z(w)

w

)2

dw.

Multiplying by
1

2
(ū0 − u0) = v +

1

2
t−1

we arrive at the first term in the second line of (2.26). The last line in (1.24) we represent as follows, using

w1 = ū1 + 1 and w−1 = u−1 + ū−1,

1

2
ū20 log ū−1 + u−1 + ū−1 + ū1ū−1 =

1

2
v2u+ w−1 + euū1 =

1

2
v2u+ w−1 + euw1 − eu

=
1

2
v2u− eu +

1

2πi

∮
(

eu

z(w)
− z(w)

)

dw

since

w1 =
1

2πi

∮

w(z)
dz

z2
=

1

2πi

∮

w
z′(w)

z2(w)
dw =

1

2πi

∮

dw

z(w)

and

w−1 =
1

2πi

∮

w(z) dz =
1

2πi

∮

w z′(w) dw = −
1

2πi

∮

z(w) dw.

Putting all these terms together we arrive at (2.26).

We are now ready to complete the proof of the Main Theorem 1.2. Define on the tangent space T(λ,λ̄)M0

a symmetric trilinear form

< ∂1 · ∂2, ∂3 >=

(2.30)

=
1

4πi

∮

|z|=1

∂1w ∂2w∂3s+ ∂1w ∂2s ∂3w + ∂1s ∂2w ∂3w − s′ ∂1w∂2w ∂3w

z2w′
dz

−resz=0
∂1(λ̄− ℓ) ∂2ℓ ∂3ℓ+ ∂1ℓ ∂2(λ̄− ℓ) ∂3ℓ+ ∂1ℓ ∂2ℓ ∂3(λ̄− ℓ) + ∂1ℓ ∂2ℓ ∂3ℓ

z2λ̄′
dz

(all differentiations of the functions w = w(z), s = s(z) := λ̄(z) − λ(z), ℓ = ℓ(z), λ̄ = λ̄(z) have to be done

keeping z = const).

Lemma 2.12 Let ∂1, ∂2, ∂3 be flat vector fields ∂/∂ti, ∂/∂u or ∂/∂v. Then the trilinear form (2.30) coincides

with the triple derivatives of the potential (1.24):

< ∂1 · ∂2, ∂3 >= ∂1∂2∂3F. (2.31)

Proof Computation of triple derivatives of the potential (2.26) by applying (2.19) is straightforward:

∂3F

∂ti∂tj∂tk
=

1

2

1

(2πi)2

∮

Γ

∮

Γ

z(w1)

z(w2)− z(w1)
(wi

1 − wi
2)(w

j
1 −wj

2)(w
k
1 − wk

2 ) dw1 dw2

(2.32)

−
1

2πi

∮

Γ

(

z(w) +
eu

z(w)

)

wi+j+kdw +
1

2

[

δi,−1δj+k,−1 + δj,−1δk+i,−1 + δk,−1δi+j,−1

]

∂3F

∂ti∂tj∂v
= δi+j,−1
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∂3F

∂v2∂u
= 1

∂3F

∂ti∂tj∂u
=

eu

2πi

∮

Γ

wi+j

z(w)
dw

∂3F

∂ti∂u2
= −

eu

2πi

∮

Γ

wi

z(w)
dw

∂3F

∂u3
=

eu

2πi

∮

Γ

dw

z(w)
− eu = ū1 e

u

all other triple derivatives vanish.

Let us start with the first integral. We open the brackets and return to the integration in z1 = z(w1),

z2 = z(w2) in order to obtain the representation

1

2

1

(2πi)2

∮

Γ

∮

Γ

z(w1)

z(w2)− z(w1)
(wi

1 −wi
2)(w

j
1 − wj

2)(w
k
1 −wk

2 ) dw1 dw2

= I1(i, j, k) + I2(i, j, k) + I3(i, j, k) + I4(i, j, k)

where

I1(i, j, k) =
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

z1
z2 − z1

wi+j+k
1 w′

1w
′
2dz1 dz2

I2(i, j, k) = −
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

z1
z2 − z1

(

wi+j
1 wk

2 +wj+k
1 wi

2 + wi+k
1 wj

2

)

w′
1w

′
2dz1 dz2

I3(i, j, k) =
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

z1
z2 − z1

(

wi
1w

j+k
2 + wj

1w
k+i
2 + wk

1w
i+j
2

)

w′
1w

′
2dz1 dz2

I4(i, j, k) = −
1

2

1

(2πi)2

∮ ∮

|z1|<|z2|

z1
z2 − z1

wi+j+k
2 w′

1w
′
2dz1 dz2.

Here we denote

w1 = w(z1), w2 = w(z2).

Integrating in z2 we represent the first integral in the form

I1(i, j, k) =
1

4πi

∮

|z|=1

z wi+j+kw′(w′)≥0dz.

Similarly,

I2(i, j, k) = −
1

4πi

∮

|z|=1

z w′
[

wi+j(wkw′)≥0 + wj+k(wiw′)≥0 + wk+i(wjw′)≥0

]

dz

etc. Using the identity (2.4) we rewrite

I1(i, j, k) + I4(i, j, k) =
1

4πi

∮

z w′wi+j+k(w′)≥0 dz −
1

4πi

∮

z w′wi+j+k (w′)≤−2 dz

=
1

4πi

∮

z w′wi+j+k Πw′ dz

where the operator Π is the difference of two projectors:

Π (f(z)) = (f)≥0 − (f)≤−1. (2.33)
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In a similar way we find that

I2(i, j, k) + I3(i, j, k) =

−
1

4πi

∮

z w′
[

wi+jΠ(wkw′) + wj+kΠ(wiw′) +wk+iΠ(wjw′)
]

dz

−
1

2

[

δi+j,−1δk,−1 + δj+k,−1δi,−1 + δk+i,−1δj,−1

]

.

Thus

∂3F

∂ti∂tj∂tk
=

= −
1

4πi

∮

z w′
[

wi+jΠ(wkw′) + wj+kΠ(wiw′) + wk+iΠ(wjw′)−wi+j+k Πw′
]

dz

−
1

2πi

∮
(

z +
eu

z

)

wi+j+kw′ dz.

On the other side, evaluation of the expression (2.30) with

∂1 =
∂

∂ti
, ∂2 =

∂

∂tj
, ∂3 =

∂

∂tk

using
∂s(z)

∂tn
= −z Π(wnw′)

(see (2.21)) yields

< ∂1 · ∂2, ∂3 >= −
1

4πi

∮

z w′
[

wi+jΠ(wkw′) + wj+kΠ(wiw′) + wk+iΠ(wjw′)
]

dz

+
1

4πi

∮

z s′(z)wi+j+kw′ dz.

Since

s′(z) = Πw′ − 2

(

1 +
eu

z2

)

one finally obtains

< ∂1 · ∂2, ∂3 >=
∂3F

∂ti∂tj∂tk
.

Next, taking

∂1 =
∂

∂ti
, ∂2 =

∂

∂tj
, ∂3 =

∂

∂v

gives

< ∂1 · ∂2, ∂3 >=
1

4πi

∮

∂1w ∂2w∂3s

z2w′
dz =

1

2πi

∮

∂1w ∂2w

z2w′
dz =< ∂1, ∂2 >=

∂3F

∂ti∂tj∂v

(we use that ∂vs(z) = 2). A similar computation works for ∂1 = ∂2 = ∂/∂u, ∂3 = ∂/∂v. For the choice

∂1 =
∂

∂ti
, ∂2 =

∂

∂tj
, ∂3 =

∂

∂u

using
∂s(z)

∂u
= 2

eu

z

we obtain

< ∂1 · ∂2, ∂3 >=
eu

2πi

∮

wi+jw′

z
dz =

∂3F

∂ti∂tj∂u
.
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In order to perform a similar computation for

∂1 = ∂2 =
∂

∂u
, ∂3 =

∂

∂ti

one has to use the second line in the formula (2.30). In this case

< ∂1 · ∂2, ∂3 >= resz=0
e2u(wiw′)≥0

z3λ̄′
dz = e2ureswiw′

(

1

z3λ̄′

)

≤−1
dz

= −eu res
wiw′

z
dz =

∂3F

∂u2∂ti
.

In the remaining cases the computation is even simpler.

The next step in the proof of the Main Theorem 1.2 is in the following

Lemma 2.13 The isomorphism (2.8) identifies the rank three symmetric tensor (2.30) on the tangent space

TM0 with the one on the cotangent space given in (2.10).

Proof Raising the indices i, j, k in the formula
〈

∂

∂ti
·

∂

∂tj
,

∂

∂tk

〉

=

= −
1

4πi

∮

z w′
[

wi+jΠ(wkw′) + wj+kΠ(wiw′) + wk+iΠ(wjw′)−wi+j+k Πw′
]

dz

−
1

2πi

∮
(

z +
eu

z

)

wi+j+kw′ dz

we obtain

< dti · dtj , dtk >∗=

= −
1

4πi

∮

z w′
[

w−i−j−2Π(w−k−1w′) + w−j−k−2Π(w−i−1w′) + w−k−i−2Π(w−j−1w′)

−w−i−j−k−3 Πw′
]

dz −
1

2πi

∮
(

z +
eu

z

)

w−i−j−k−3w′ dz.

We will now derive the same formula by using the multiplication (2.1) and the bilinear form (2.9) on the

cotangent bundle.

We will need the formula for the Jacobi matrix of the coordinate transformation (w, u, v) 7→ (t, u, v). It is

not difficult to show that
∂tn
∂wm

= −
1

2πi

∮

w−n−1zm−1dz, m, n ∈ Z. (2.34)

From this we derive the following representation for the pair of functions ˆdtn ∈ Ḣ(D0) ⊕ H(D∞) = T ∗M

representing the 1-form dtn =
∑

m
∂tn
∂wm

dwm:

ˆdtn = −
1

z

(

w−n−1(z)≥0, w
−n−1(z)≤1

)

. (2.35)

Substitution into the formula (2.1) produces the following vector in T ∗M :

d̂ti · d̂tj =

=

(

w−i−1
≥0

[

λ′w−j−1
≥0 + λ̄′w−j−1

≤1

]

≥0
+ w−j−1

≥0

[

λ′w−i−1
≥0 + λ̄′w−i−1

≤1

]

≥0

−
[

λ′w−i−1
≥0 w

−j−1
≥0 + λ̄′

(

w−i−1
≥0 w

−j−1
≤1 +w−j−1

≥0 w
−i−1

≤1

)]

≥−1
,

−w−i−1
≤1

[

λ′w−j−1
≥0 + λ̄′w−j−1

≤1

]

≤−1
− w−j−1

≤1

[

λ′w−i−1
≥0 + λ̄′w−i−1

≤1

]

≤−1

+
[

λ̄′w−i−1
≤1 w

−j−1
≤1 + λ′

(

w−i−1
≥0w

−j−1
≤1 +w−j−1

≥0 w
−i−1

≤1

)]

≤0

)
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Similarly, after substitution of (2.35) into (2.8) we obtain

η
(

ˆdtk

)

= −z

(

[

λ′w−k−1
≥0 + λ̄′w−k−1

≤1

]

≤−1
+ λ′ w−k−1

≤−1,

[

λ′w−k−1
≥0 + λ̄′w−k−1

≤1

]

≥0
+ λ̄′ w−k−1

≥2

)

.

Substituting

λ′ = (w′)≤−2 + 1 +
eu

z2

λ̄′ = (w′)≥ 0 − 1−
eu

z2

after a somewhat lengthy computation we obtain that

〈d̂ti · d̂tj , η( ˆdtk)〉 =< dti · dtj , dtk >∗ .

In a similar way we check that

〈d̂ti · d̂tj , η(d̂u)〉 =< dti · dtj , du >∗

〈d̂u · d̂u, η( ˆdtk)〉 =< du · du, dtk >∗

〈d̂ti · d̂tj , η(d̂v)〉 =< dti · dtj , dv >∗ (2.36)

etc. where

d̂u =
(

0, e−u
)

, d̂v =
(

0,
1

z

)

.

The last simple step of the proof is in verifying the quasihomogeneity identity

E F = 2F +
1

2
(ū0 − u0)

1

2πi

∮

w(z)
dz

z
+ ū20

= 2F −
1

2
(v + t−1)t−1 + v2 + linear terms. (2.37)

This completes the proof of the Lemma.

Let us now explain in what sense the above algebra on the cotangent space is semisimple on the open

subset Ms s ⊂ M0 defined by imposing an additional condition

λ′(p)λ̄′′(p)− λ̄′(p)λ′′(p) 6= 0 for any p ∈ S1. (2.38)

For every p ∈ S1 define a linear functional dµ(p) by the formula

〈dµ(p), α̂〉 =
α(p)

λ′(p)
−

ᾱ(p)

λ̄′(p)
. (2.39)

The functionals dµ(p) span the cotangent space to Ms s (actually, at the points where λ′(p) 6= 0, λ̄′(p) 6= 0 for

p ∈ S1; this restriction will be eliminated in a second). Indeed, the vector α̂ = (α(z), ᾱ(z)) can be reconstructed

from knowing all the values

a(p) := 〈dµ(p), α̂〉 for all p ∈ S1

by the following procedure:

α(z) = λ′(z)[a(z)]≤0

(2.40)

ᾱ(z) = −λ̄′(z)[a(z)]≥1.

It is convenient to change normalization of these 1-forms introducing

du(p) = −
λ′(p)λ̄′(p)

λ′(p) + λ̄′(p)
dµ(p) =

λ′(p) dλ̄(p)− λ̄′(p) dλ(p)

λ′(p) + λ̄′(p)
. (2.41)
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Lemma 2.14 The inner products and multiplication of the 1-forms du(p) is given by the following expressions

< du(p), du(q) >∗= f(p)δ(p− q) (2.42)

du(p) · du(q) = f(p)δ(p− q) du(p) (2.43)

f(p) = −p2
λ′(p)λ̄′(p)

λ′(p) + λ̄′(p)
(2.44)

where the delta-function on the circle is defined by

δ(p− q) =
∑

k∈Z

pk

qk+1
,

1

2πi

∮

|q|=1

f(q)δ(p− q) dq = f(p).

Proof is given by a simple computation using (1.16), (1.17).

Thus, the 1-forms du(p) are idempotents of the Frobenius algebra on T ∗Ms s. The Theorem is proved.

The reader familiar with the theory of finite-dimensional semisimple Frobenius manifolds certainly remem-

bers that the basic idempotents in the tangent bundle can be represented [8] as partial derivatives along the

canonical coordinates u1, . . . , un. These partial derivatives span the tangent space; they satisfy

∂

∂ui
·

∂

∂uj
= δij

∂

∂ui
〈

∂

∂ui
,

∂

∂uj

〉

= ηii(u) δij .

The canonical coordinates can be chosen in such a way that

〈dui, E〉 = ui, i = 1, . . . , n.

The multiplication and inner products of the differentials of the canonical coordinates satisfy

< dui, duj >∗= η−1
ii (u)δij

dui · duj = η−1
ii (u)δijdui.

Using these finite-dimensional hints one arrives at the following construction of the canonical coordinates.

Consider the curve Σ defined in (1.25). The analytic curve Σ is smooth, i.e. σ′(p) 6= 0 due to the assumptions

(2.38). Denote M0
s s ⊂ Ms s the subset consisting of pairs (λ, λ̄) such that the curve Σ does not intersect itself.

Consider the function (1.26) on the curve Σ:

uσ :=
[

σ λ̄(p) + (σ − 1)λ(p)
]

p=p(σ)
, σ ∈ Σ

where p = p(σ) is the inverse map. The identity (1.27) holds true for any σ ∈ Σ. Varying the curve Σ we

obtain the variation of the point of the Frobenius manifold defined by the equation (1.27).

We have to establish that the functionals (1.26) are the canonical coordinates on M0
s s ⊂ M0. Indeed,

taking the differential of (1.26) one obtains, due to the equation (1.27) the 1-form (2.41)

duσ = du(p)p=p(σ).

This proves Proposition 1.3.

Example 2.15 Let us compute the Frobenius algebra structure on the two-dimensional locus M2
0 ⊂ M0 defined

by

λ = z − v −
eu

z
, λ̄ =

eu

z
+ v. (2.45)
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The curve Γ = w(S1) in this case is the unit circle with the standard parametrization. So the tangent space to

M0 at the points of M2
0 coincides with the Cartesian product of the space of vector fields on the circle spanned

by

Xn = zn+1 ∂

∂z
= −

∂

∂tn
, n ∈ Z (2.46)

and the two-dimensional space with the basis e = ∂/∂v and ∂/∂u. The multiplication table of these vector

fields reads

Xi ·Xj =
1

2
[θ(i) + θ(j) + θ(−i− j − 2) + 1]Xi+j+1 + δi+j,−1

∂

∂u

+eu
[

Xi+j−1 + δi+j,0
∂

∂v

]

(2.47)

∂

∂u
·Xi = eu

[

Xi−1 + δi,0
∂

∂v

]

∂

∂u
·
∂

∂u
= eu X−1

where θ is the step function,

θ(n) =

{

1, n ≥ 0

−1, n < 0

Remark 2.16 A combination of the limit

Reu → −∞

and the projector

pr : TM0 → TM0, pr

(

∂

∂u

)

= pr

(

∂

∂v

)

= 0, pr

(

∂

∂ti

)

=
∂

∂ti

provides the tangent planes to the space Mred of parametrized analytic curves {z 7→ w(z), |z| = 1} ∈ Mred

with a structure of Frobenius algebra. The nondegenerate invariant inner product of tangent vectors is given

by the first term in the formula (2.13), the trilinear symmetric form < ∂1 · ∂2, ∂3 >Mred
is given by the triple

derivatives of the reduced potential

Fred(t) =
1

2

1

(2πi)2

∮

Γ

∮

Γ

Li3

(

z(w1)

z(w2)

)

dw1 dw2 −
1

2πi

∮

Γ

z(w) dw (2.48)

For example, specializing the Frobenius algebra at the point w(z) ≡ z one obtains the following graded

Frobenius algebra with no unit

Xi ·Xj =
1

2
[θ(i) + θ(j) + θ(−i− j − 2) + 1]Xi+j+1 (2.49)

< Xi, Xj >= δi+j,−1

(cf. (2.47) above), degXi = i+ 1.

Example 2.17 Let us consider a two-dimensional locus M2 ⊂ M0 defined by the equation

λ(z) = λ̄(z).

From the explicit formulae (2.32) one conclude that M2 is a Frobenius submanifold isomorphic to the quantum

cohomology of P1

∂

∂u
·
∂

∂u
= eu

∂

∂v
,

∂

∂u
·
∂

∂v
=

∂

∂u
,

∂

∂v
·
∂

∂v
=

∂

∂v
,

〈

∂

∂u
,
∂

∂v

〉

= 1

(also describing the dispersionless limit of the standard 1+1 Toda lattice).
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3 Relation with the 2D Toda hierarchy

We begin with the study of the intersection form of the Frobenius manifold M0.

Lemma 3.1 The intersection form of the Frobenius manifold M0 reads

(ω̂1, ω̂2)∗ = 〈ω̂1, γ(ω̂2)〉 (3.1)

where the linear map γ : T ∗
(λ,λ̄)

M0 → T(λ,λ̄)M0 is defined by

γ(ω̂) = z2
(

λ′(εω + ε̄ω̄)≤−2 − ε(λ′ω + λ̄′ω̄)≤−2, (3.2)

−λ̄′(εω + ε̄ω̄)≥−1 + ε̄(λ′ω + λ̄′ω̄)≥−1

)

where ε = ε(z) = λ(z) − zλ′(z) and ε̄ = ε̄(z) = λ̄(z) − zλ̄′(z) are the components of the Euler vector field

E = (ε, ε̄).

Lemma 3.2 The linear operator γ is invertible on the open subset of M0 defined by the conditions (1.30).

The inverse operator ω̂ = (ω, ω̄) = γ−1(α̂), α̂ = (α, ᾱ) reads

ω =
1

z2

(

1

λ′

[

λ̄′α− λ′ᾱ

λλ̄′ − λ̄λ′

]

≥1

)

≥1

, ω̄ = −
1

z2

(

1

λ̄′

[

λ̄′α− λ′ᾱ

λλ̄′ − λ̄λ′

]

≤0

)

≤2

. (3.3)

Proof is similar to that of Lemma 2.7.

Computing the pairing

〈γ−1(α̂), β̂〉 =: (α̂, β̂)

we obtain the expression (1.31) for the intersection form on the tangent bundle. This completes the proof of

Proposition 1.5.

Let LM be the loop space of maps from S1 to the manifold M . A point in LM is given by a pair of

maps (λ(z, x), λ̄(z, x)). A tangent vector at a point (λ, λ̄) ∈ LM is naturally identified with a map from S1 to

TM = H(D∞)⊕Ḣ(D0) and a 1-form with a map from S1 to T ∗M = Ḣ(D0)⊕H(D∞). The pairing between

a vector α̂ = (α, ᾱ) and a 1-form ω̂ = (ω, ω̄) is the natural extension of the pairing (1.12), i.e.

〈ω̂, α̂〉 =
1

2πi

∮

S1

∮

|z|=1

[α(z, x)ω(z,x) + ᾱ(z, x)ω̄(z, x)] dz dx. (3.4)

The dispersionless two-dimensional Toda hierarchy is composed of two sequences of commuting vector

fields on LM , denoted by times sn and s̄n for n > 0. They are defined by the Lax equations

∂λ

∂sn
= {(λn)+, λ}

∂λ̄

∂sn
= {(λn)+, λ̄}

(3.5)

∂λ

∂s̄n
= {(λ̄n)−, λ}

∂λ̄

∂s̄n
= {(λ̄n)−, λ̄}.

The bracket of two functions of z and x is given by

{f, g} = z
∂f

∂z

∂g

∂x
− z

∂g

∂z

∂f

∂x
. (3.6)

It follows from standard arguments [25] that the formulas (3.5) provide well-defined vector fields on LM .

A Poisson structure on LM is defined by a map Pi from the cotangent to the tangent space of LM at each

point of the loop space, such that the associated Poisson bracket between local functionals on LM

{F,G}i = 〈dF, Pi(dG)〉 (3.7)

is skew-symmetric and satisfies the Jacobi identity. A bi-Hamiltonian formulation of the 2D Toda hierarchy

has been obtained in [5]. By taking the dispersionless limit we can easily obtain the following result.
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Proposition 3.3 The following formulas define pair of compatible Poisson structures, P1 and P2, on LM

P1(ω̂) =
(

− {λ, (zω − zω̄)−}+ ({λ, zω}+ {λ̄, zω̄})≤0,

{λ̄, (zω − zω̄)+}+ ({λ, zω}+ {λ̄, zω̄})>0

)

, (3.8)

P2(ω̂) =
(

{λ, (zλω + zλ̄ω̄)−} − λ({λ, zω}+ {λ̄, zω̄})≤0 + zλ′ϕx,

−{λ̄, (zλ̄ω̄ + zλω)+}+ λ̄({λ, zω}+ {λ̄, zω̄})>0 + zλ̄′ϕx

)

. (3.9)

Here λ′ = dλ/dz, λ̄′ = dλ̄/dz, the function ϕ is given by

ϕ =
1

2πi

∮

|z|=1

(

zλ′ω + zλ̄′ω̄
)

dz. (3.10)

The flows (3.5) are Hamiltonian with respect to both Poisson structures (3.8)

∂

∂sn
· = {·,Hn}1 = −{·, Hn−1}2

(3.11)

∂

∂s̄n
· = {·, H̄n}1 = {·, H̄n−1}2

with Hamiltonians

Hn = −
1

2πi

∮

S1

∮

|z|=1

λn+1

n+ 1

dz

z
dx, H̄n = −

1

2πi

∮

S1

∮

|z|=1

λ̄n+1

n+ 1

dz

z
dx. (3.12)

Remark 3.4 Actually we use here a slightly different bi-Hamiltonian formulation of the 2D Toda hierarchy.

It differs from the one obtained in [5] only by a few, although non-trivial, signs as one can check from the

definitions above.

It is possible to obtain explicit expressions for the Poisson brackets on LM .

Let us introduce 1-forms dλ(p, y), dλ̄(p, y) at a point of LM such that

〈dλ(p, y), α̂〉 = α(p, y), 〈dλ̄(p, y), α̂〉 = α̂(p, y) (3.13)

for any element α̂ = (α, ᾱ) of the tangent at the same point. Clearly they are the differentials of the functionals

on LM that evaluate λ ( λ̄ respectively ) at a point (p, y) with y ∈ S1 and p ∈ D∞ (D0 respectively). As

before they can be realized as

dλ(p, y) =

(

p

z

1

p− z
δ(x− y), 0

)

dλ̄(p, y) =

(

0,
z

p

1

z − p
δ(x− y)

)

. (3.14)

The following expressions are obtained by substitution of (3.14) in (3.8) and (3.9). The explicit form of the

first Poisson bracket is

{α(p, x), β(q, y)}1 =
pq

p− q
(ǫ(α)βq(q, x)− ǫ(β)αp(p, x))δ

′(x− y)

(3.15)

+pq
∂

∂q

(

ǫ(α)βx(q, x)− ǫ(β)αx(p, x)

p− q

)

δ(x− y)

and that of the second Poisson bracket is

{α(p, x), β(q, y)}2 = pq

[

αpβ − βqα

p− q
+ αpβq

]

δ′(x− y)

(3.16)

+pq

[

∂

∂q

(

αxβ − βxα

p− q

)

+
αpβx − βqαx

p− q
+ αpβqx

]

δ(x− y).
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As before α, β can take the values λ, λ̄ and by definition ǫ(λ) = 1 and ǫ(λ̄) = −1. In the right-hand side of the

last formula we have assumed α = α(p, x) and β = β(q, x). The subscripts stand for the partial derivatives:

αp = ∂α(p, x)/∂p, βx = ∂β(q, x)/∂q etc.

These are Poisson brackets of hydrodynamic type. The metrics can be read easily as coefficients of δ′(x−y).

In this way we arrive at

Proposition 3.5 The metrics associated to the Poisson pencil (3.8) and (3.9) of the 2D Toda hierarchy

coincide with the contravariant metric (1.16) and the intersection form (1.29) of the Frobenius manifold M0.

Remark 3.6 The map

M0 → Mred, (λ(z), λ̄(z)) 7→ w(z) = λ(z) + λ̄(z)

induces a map of the loop spaces

LM0 → LMred. (3.17)

Let us equip the second loop space LMred with the Poisson structure of the two-dimensional incompressible

fluid on the two-dimensional torus T = {(x1, x2) ∼ (x1 + 2πm, x2 + 2πn)}:

{w(x), w(y)} = ∂x1w(x)δ(x1 − y1)δ
′(x2 − y2)− ∂x2w(x)δ′(x1 − y1)δ(x2 − y2) (3.18)

x = (x1, x2), y = (y1, y2) ∈ T.

that is, with the Lie – Poisson bracket on the dual space to the Lie algebra V of divergence-free vector fields

(see, e.g., [2,23]). The loop space LM0 will be considered as a Poisson manifold with respect to the first Poisson

bracket (3.15). Then the map (3.17) is a morphism of Poisson manifolds.

Indeed, the Poisson brackets (3.15) of the point-functionals w(z, x) = λ(z, x)+λ̄(z, x) after the substitution

p = ei x1 , q = ei y1 , x = x2, y = y2

reduce to (3.18). The functionals w(z, x) commute with u(x), v(x) while the brackets of these two are familiar

from the Hamiltonian description of the dispersionless limit utt = (eu)xx of the standard 1+1 Toda lattice:

{u(x), v(y)} = δ′(x− y), other brackets vanish.

Let us recall [9] that with an arbitrary n-dimensional Frobenius manifold M a system of functions

θα,p(v), α = 1, . . . , n, p ≥ 0, v ∈ M

is associated. In particular,

θα,0 = vα ≡ ηα,βv
β , θα,1 =

∂F

∂vα
,

for p > 1 these functions are determined from the recursion

∂2θα,p(v)

∂vλ∂vµ
=

n
∑

ν=1

cνλµ(v)
∂θα,p−1

∂vν
(3.19)

where all derivatives have to be taken in a system of flat coordinates. The Hamiltonians

Hα,p =

∫

S1

θα,p+1(v(x)) dx

commute pairwise with respect to both the Poisson structures associated with the flat pencil of metrics on M

(see details in [9]). These Hamiltonians satisfy certain recursion relations with respect to the bihamiltonian

structure. The Hamiltonians Hα,−1 are Casimirs of the first Poisson structure; the Hamiltonians Hα,0 generate

the primary flows (1.32):
{

· ,Hα,0

}

1
=

∂

∂tα,0
, α = 1, . . . , n.

Let us describe the primary flows for the infinite-dimensional Frobenius manifold M0.
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Lemma 3.7 For the Frobenius manifold M0 the primary Hamiltonians

Hα,0 =

∫

S1

∂F

∂tα
dx, α ∈ Z

Hu,0 =

∫

S1

∂F

∂u
dx, Hv,0 =

∫

S1

∂F

∂v
dx

generate the equations (1.33).

Proof We prove the theorem for the flows ∂
∂tα,0 , α ∈ Z leaving the remaining cases ∂

∂tu,0 and ∂
∂tv,0

as an easy

exercise for the reader. We will first compute the derivatives ∂
∂tα,0 of the variables w(z), u, v and then show

that they coincide with the Lax flows (1.33).

Step 1. We compute
∂z(w)
∂tα,0 .

∂z(w)

∂tα,0
=
∑

i

z(w)wi ∂ti
∂tα,0

= z(w)wi
[

c−(i+1),α,βt
β
x + c−(i+1),α,uux + c−(i+1),α,vvx

]

(3.20)

Before plugging the triple derivatives cα,β,γ of the potential (2.32) in (3.20), we observe that they can be

rewritten as follows:

cα,β,γ =
1

2πi

∮

z(a)aα − z(b)bα

z(a)− z(b)
aγbβda db+ (3.21)

+
1

2πi

∮

z(a)

z(a)− z(b)
aβ+γbαda db− (3.22)

−
1

2πi

∮
(

z(a) +
eu

a
+

∮

z(a)

z(a)− z(r)
dr

)

aα+β+γda (3.23)

Substituing this expression into (3.20) we get:

∂z(w)

∂tα,0
= z(w)wα

∮

1

z(w)− z(b)

z(w)

z(b)
zx(b)db− z(w)

∮

bα

z(w)− z(b)
zx(b)db+

(3.24)

+z(w)zx(w)

∮

bα

z(w)− z(b)
db−

−

(

z(w) +
eu

z
(w) +

∮

z(w)

z(w)− z(r)
dr

)

zx(w)wα +

+euuxw
α + z(w)wαvx

Note that this computation holds for every α ∈ Z.

Using simple identities

∂w(z)

∂tα,0
= −w′(z)

∂z(w)

∂tα,0
(w(z)) (3.25)

wx(z) = −w′(z)zx(w(z)) (3.26)

along with (3.24) we get

∂w(z)

∂tα,0
= −w′(z)wα(z)z

∮

1

z − z(b)

z

z(b)
zx(b)db+ zw′(z)

∮

bα

z − z(b)
zx(b)db+

+zwx(z)

∮

bα

z − z(b)
db− wx(z)w

α(z)

(

z +
eu

z
+

∮

z

z − z(r)
dr

)

−

−euuxw
′(z)wα(z)− zw′zwα(z)vx (3.27)
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Perform the change of variables a = z(b) in the integrals, using (3.26) for the first two terms:

∂w(z)

∂tα,0
= w′(z)wα(z)z

∮

1

z − a

z

a
wx(a)da− zw′(z)

∮

wα(a)

z − a
wx(a)db+

+zwx(z)

∮

wα(a)

z − a
w′(a)da− wx(z)w

α(z)

∮

z

z − a
w′(a)da−

−wx(z)w
α(z)

(

z +
eu

z

)

−

−euuxw
′(z)wα(z)− zw′zwα(z)vx (3.28)

All this integrals are projections of the type (2.3). Computing them explicitly we finally get:

∂w(z)

∂tα,0
= wα

{

w(z), w(z)≤0

}

+ wα
{

wα+1(z), z − v − eu

z

}

+ (3.29)

+
(

zw′(z)wα(z)
)

<0
wx(z)− zw′(z)

(

wα(z)wx(z)
)

<0

The primary time derivatives of the coordinates u, v are given directly by (2.32):

∂v

∂tα,0
= eu∂x

(

−

∮

wα

z(w)
dw

)

+ euux

(

−

∮

wα

z(w)
dw

)

(3.30)

∂u

∂tα,0
= ∂x

(

t−(α+1)
)

(3.31)

Step 2. We write the Lax flows ∂
∂tα,0 for α 6= −1 in the w(z), u, v, coordinates and show that they coincide

with (3.29),(3.30) and (3.31). Plugging formulas (2.15) into (1.33) we get:

∂w(z)

∂tα,0
=

1

α+ 1

{

wα+1(z)<0, w(z)≤0

}

−
1

α+ 1

{

wα+1(z)≥0, w>0

}

+ (3.32)

+
1

α+ 1

{

wα+1(z), z − v −
eu

z

}

∂v

∂tα,0
=

{(

−
wα+1(z)

α+ 1

)

1

z,
eu

z

}

(3.33)

eu

z

∂u

∂tα,0
=

{(

−
wα+1(z)

α+ 1

)

0

,
eu

z

}

(3.34)

Here as above (f(z, x))n is the n-th coefficient of the Laurent expansion of f(z, x) in the z varible. Adding

1

α+ 1

{

wα+1(z)≥0, w(z)≤0

}

−
1

α+ 1

{

wα+1(z)≥0, w(z)≤0

}

= 0

to (3.32) we get:

∂w(z)

∂tα,0
=

1

α+ 1

{

wα+1(z), w(z)≤0

}

+
1

α+ 1

{

wα+1(z)<0, w(z)
}

+ (3.35)

+
1

α+ 1

{

wα+1(z), z − v −
eu

z

}

Clearly z∂z (f(z))<0 = (z∂zf(z))<0, ∂x (f(z))<0 = (∂xf(z))<0, hence we can rewrite the flow in the final

form:

∂w(z)

∂tα,0
= wα

{

w(z), w(z)≤0

}

+ wα

{

wα+1(z), z − v −
eu

z

}

+ (3.36)

+
(

zw′(z)wα(z)
)

<0
wx(z)− zw′(z)

(

wα(z)wx(z)
)

<0
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The formula (3.36) can be proven in a similar manner also for the exceptional Lax flow ∂
∂t−1,0 . This formula

coincides with primary flow evaluation over w(z) (formula (3.29)).

To conclude the proof we rewrite (3.33) and (3.34) in the more convenient form:

∂v

∂tα,0
=

(

−
wα+1(z)

α+ 1

)

1

euux + eu∂x

(

−
wα+1(z)

α+ 1

)

1

(3.37)

∂u

∂tα,0
= ∂x

(

−
wα+1(z)

α+ 1

)

0

(3.38)

Also this formulas have an analog in the α = −1 case, one just has to replace the function
(

−
wα+1(z)

α+1

)

with
(

−
logw(z)

z

)

.

One can easily see that
(

−
∮

wα

z(w)
dw
)

=
(

−
wα+1(z)

α+1

)

1
for α 6= −1, while

(

−
∮

w−1

z(w)
dw
)

=
(

−
logw(z)

z

)

1
.

Hence (3.37) coincides with the evaluation of the primary flow over v (formula (3.30)). Proving that (3.38)

and (3.31) coincide only uses the definition of the flat coordinates ti in terms of w(z).

Lemma 3.8 The Hamiltonians of the Principal Hierarchy associated with the Frobenius manifold M0 satisfy

the following recursion

{

· , Hα,p−1

}

2
= (p+ α+ 1) { · ,Hα,p}1 (3.39)

{

· , Hu,p−1

}

2
= (p+ 1) { · ,Hu,p}1

{

· , Hv,p−1

}

2
= p { · ,Hv,p}1 + 2

{

· ,Hu,p−1

}

1
.

Proof follows from the standard formalism of the theory of Frobenius manifolds [12,9] taking into account

the quasihomogeneity degrees of the flat coordinates

deg tα = −(α+ 1), deg v = 1, deg u = 0, deg eu = 2.

Corollary 3.9 The Hamiltonians (3.12) of the dispersionless 2D Toda hierarchy commute, with respect to

both the Poisson brackets with all Hamiltonians of the Principal Hierarchy.

Proof Let us prove that {Hn,Hα,p}1 = 0. Using recursions (3.11) and (3.39) we obtain

{Hn,Hα,p}1 = −{Hn−1,Hα,p}2 = −(p+ α+ 2)
{

Hn−1,Hα,p+1

}

1
.

Iterating we arrive at the equation

{Hn,Hα,p}1 = const {H−1,Hα,q}1

for some constant coefficient and some q > p. The Poisson bracket in the right-hand side vanishes since

H−1 = −

∫

S1

(t−1 + v)dx

(see (2.25)) is a Casimir of the first Poisson bracket. Similarly, using

H̄−1 =

∫

S1

v dx

we prove that
{

H̄n,Hα,p

}

1
= 0.

Commutativity of the Hamiltonians Hn, H̄n with other Hamiltonians of the principal hierarchy with respect

to both Poisson brackets can be proved in a similar manner. This completes the proof of the Corollary and,

thus, the proof of Theorem 1.6.
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In the conclusion of this Section we derive the diagonal form (1.34) of the primary flows using the canonical

coordinates (1.26). By the general definition [9] the primary time derivative of an arbitrary function f on M0

can be written in the form [9]
∂f

∂ti,0
=

∂

∂ti
·
∂f

∂x

where the product of tangent vectors ∂/∂ti and ∂f/∂x has to be computed in the right hand side. The operator

of multiplication by ∂/∂ti becomes diagonal in the canonical coordinates with the eigenvalues

〈du(p),
∂

∂ti
〉.

Computation of this pairing with the help of (2.21) gives the needed expression. In a similar way, using (2.22)

we prove the second formula in (1.34). This completes the proof of Proposition 1.7.

Remark 3.10 One can also easily obtain the diagonal form of the dispersionless Toda equations:

∂uσ
∂sn

= Cn(σ)
∂uσ
∂x

∂uσ
∂s̄n

= C̄n(σ)
∂uσ
∂x

Cn(σ) =
[

(

p λ′(p)
)

≥0

]

p=p(σ)
, C̄n(σ) =

[

(

p λ̄′(p)
)

<0

]

p=p(σ)
(3.40)

n = 1, 2, . . . , σ ∈ Σ.

4 Concluding remarks

In the present paper we have introduced a structure of an infinite-dimensional semisimple Frobenius manifold

on the space of pairs of symbols of Lax operators of the 2D Toda hierarchy provided validity of certain

analyticity conditions for the symbols. We have demonstrated that the rich geometry known from the finite-

dimensional theory extends to the infinite-dimensional case. The analytic conditions for the symbols were

crucial in establishing the main properties of these geometrical structures.

It would be certainly of interest to study generalizations of the above constructions to a wider class of

symbols with less restrictive analytic assumptions. We plan to do it in subsequent publications.

In a subsequent publication we will also study the properties of solutions to the Principal Hierarchy

and their tau-functions. In particular we will be interested in the so-called topological solution obtained by

extending the potential F to the descendent time variables. The tau-function of this solution is specified by

the string equation

∂ log τ

∂tv,0
=
∑

α∈Z

∑

k≥1

tα,k
∂ log τ

∂tα,k−1
+
∑

k≥1

tu,k
∂ log τ

∂tu,k−1
+
∑

k≥1

tv,k
∂ log τ

∂tv,k−1
(4.1)

+
1

2

∑

i+j=−1

ti,0tj,0 + tu,0tv,0.

Note that the infinite sum in the right hand side converges on the small phase space

ti,0 = ti, tu,0 = u, tv,0 = v, other times vanish

due to (2.24).

For more general solutions we plan to study their local structure near the singular points. For solutions

to 1+1 systems the singular points of a generic solution correspond to the gradient catastrophe of a single

Riemann invariant (or of a pair of complex conjugate invariants for the case of nonlinear elliptic systems), see

[10]. For the solutions to the Principal Hierarchy (and, in particular, for solutions to the dispersionless 2D

Toda) and other systems with continuous families of Riemann invariants one might expect a somewhat more

complicated behaviour associated with appearance of singularities on the curve Σ.
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The constructions of this paper can be generalized to the more general Frobenius manifolds Mm,n
0 consisted

from the pairs of functions λ(z), λ̄(z) with the poles at ∞/0 resp. of the orders m and n. The details will be

given elsewhere. The Frobenius manifold Mm,n
0 contains a finite-dimensional submanifold (cf. Example 2.17

above) associated with the so-called bigraded Toda lattice [6]. It would be also interesting to find an extension

of the Frobenius manifold M0 in order to include the dispersionless limit of a more complicated reduction of

the 2D Toda hierarchy constructed by E.Getzler [16] in the theory of equivariant Gromov – Witten invariants

of P1 (see also [14,21]).

The problem of classification of infinite-dimensional semisimple Frobenius manifolds looks to be attractive.

Recall [8,9] that in the n-dimensional case semisimple Frobenius manifolds are parametrized by the n×n Stokes

matrices of a certain linear differential operator of order n with rational coefficients.

Last but not least: we are confident that the ideas and methods of the present paper can be generalized

to other 2+1 integrable systems. This will be done in subsequent publications.
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