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Abstract

We obtain asymptotic expansions for Toeplitz determinants corresponding to
a family of symbols depending on a parameter t. For t positive, the symbols are
regular so that the determinants obey Szegő’s strong limit theorem. If t = 0,
the symbol possesses a Fisher-Hartwig singularity. Letting t → 0 we analyze
the emergence of a Fisher-Hartwig singularity and a transition between the two
different types of asymptotic behavior for Toeplitz determinants. This transition
is described by a special Painlevé V transcendent. A particular case of our result
complements the classical description of Wu, McCoy, Tracy, and Barouch of the
behavior of a 2-spin correlation function for a large distance between spins in the
two-dimensional Ising model as the phase transition occurs.

1 Introduction

Consider the Toeplitz determinant with symbol f(z) ∈ L1(C), where C is the unit
circle:

Dn = det(fj−k)
n−1
j,k=0, fj =

1

2π

∫ 2π

0
f(eiθ)e−ijθdθ. (1.1)

We are interested in the behavior of Dn as n→ ∞.
If ln f(z) is sufficiently smooth on the unit circle (in particular, f(z) is never zero

for z ∈ C and has no winding around the origin) so that ln f(z) ∈ L1(C) and the sum

∞∑

k=1

k|(ln f)k|2, (ln f)k =
1

2π

∫ 2π

0
ln f(eiθ)e−ikθdθ, (1.2)

converges, then the asymptotics of Dn are given by the strong Szegő limit theorem
[22, 21, 25]:

lnDn =
n

2π

∫ 2π

0
ln f(eiθ)dθ +

∞∑

k=1

k(ln f)k(ln f)−k + o(1), as n→ ∞. (1.3)

However, one often encounters a situation where the symbol possesses so-called
Fisher-Hartwig singularities. In the case of only one such singularity, located at z = 1,
the symbol has the form:

f(z) = |z−1|2αzβe−iπβeV (z) = (2−2 cos θ)αeiβ(θ−π)eV (eiθ), for 0 < θ < 2π, (1.4)
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where V (z) is a sufficiently smooth function (see [11]) on the unit circle. The singularity
at z = 1 combines a jump-type (for α = 0, β 6= 0) and a root-type singularity (for β = 0,
α 6= 0). For this symbol the sum (1.2) diverges, and therefore Szegő’s theorem does not
hold. The asymptotics for the Toeplitz determinant are given instead by the expression
[8, 35, 6, 15, 11]:

lnDn = nV0 +
∞∑

k=1

kVkV−k − (α− β)
∞∑

k=1

Vk − (α+ β)
∞∑

k=1

V−k

+ (α2 − β2) lnn+ ln
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
+ o(1), as n→ ∞, (1.5)

if

α± β 6= −1,−2, ..., (1.6)

with

Vk =
1

2π

∫ 2π

0
V (eiθ)e−ikθdθ.

Here G is Barnes’ G-function, which is an entire function having the properties: G(z+
1) = Γ(z)G(z), where Γ(z) is Euler’s Γ-function, and G(1) = 1, G(−k) = 0 for k =
0, 1, 2, . . . . Note that if V (z) ≡ 0, there exists an explicit expression for Dn with symbol
|z − 1|2αzβe−iπβ in terms of G-functions [9, 10].

Suppose now that a symbol depends on a parameter t (f(z) = f(z; t)) so that when
t > 0 the symbol is “regular”, i.e. Szegő’s theorem holds for Dn(t), while at t = 0 the
symbol has the form (1.4). The purpose of the present paper is to study the transition
from (1.3) to (1.5) as t→ 0. Namely, consider the following symbol

f(z) = (z − et)α+β(z − e−t)α−βz−α+βe−iπ(α+β)eV (z), α± β 6= −1,−2, ... (1.7)

where t ≥ 0 is sufficiently small and α, β ∈ C with Reα > −1
2 . We further assume that

V (z) is analytic in an annulus containing the unit circle and write it there in terms of
its Fourier series

V (z) =

+∞∑

k=−∞

Vkz
k. (1.8)

We define the powers in (1.7) with arguments between 0 and 2π. With this choice
of branch cuts, f , and moreover ln f , is analytic in C \

(
[0, e−t] ∪ [et,+∞)

)
and, in

particular, on the unit circle for t > 0. Therefore, for any fixed t > 0, the asymptotics
of the Toeplitz determinantDn(t) are given by (1.3). Calculating the Fourier coefficients
(ln f)k, we obtain

lnDn(t) = nt(α+ β) + nV0

+

∞∑

k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]
+o(1), as n→ ∞, t > 0.

(1.9)

For t = 0, the symbol reduces to (1.4) (with analytic V ). Therefore, for t = 0, the
asymptotics of Dn(t) are given by (1.5). In the present paper we describe the transition
from (1.9) to (1.5) when t decreases to 0.
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The paper also sets the stage for analysis of various other transition asymptotics
for Toeplitz determinants, such as 2 singularities approaching each other; emergence of
an arc of the unit circle where the symbol f = 0 from 2 jump-type singularities at the
ends of the arc, etc.

Our analysis explains to some extent the question of connection between Painlevé
tau-functions and Toeplitz determinants which was noticed before: see [7] for a discus-
sion and references. Historically and as the most prominent example, this connection
appeared in the study of 2-spin correlation functions in the 2-dimensional Ising model.
We discuss this in the following section.

1.1 Application: the two-dimensional Ising model

Transitions between Szegő weights and Fisher-Hartwig weights arise for example in
the theory of solvable two-dimensional statistical models and one-dimensional Heisen-
berg spin chains. Recall the two-dimensional Ising model solved by Onsager (see, e.g.,
[32, 29]). In this model a 2M×2N rectangular lattice is considered with an associated
spin variable σjk taking the values 1 and −1 at each vertex (j, k), −M ≤ j ≤ M− 1,
−N ≤ k ≤ N − 1. There are 24MN possible spin configurations {σ} of the lattice
(a configuration corresponds to values of all σjk fixed). We associate with each con-
figuration the energy of the nearest-neighbor coupling (imposing the cyclic boundary
conditions on the lattice)

E({σ}) = −
M−1∑

j=−M

N−1∑

k=−N

(γ1σjkσj k+1 + γ2σjkσj+1k) , γ1, γ2 > 0. (1.10)

The partition function at a temperature T > 0 is equal to

Z(T ) =
∑

{σ}

e−E({σ})/T , (1.11)

where the sum is over all configurations. A remarkable feature of this model is the
presence of a thermodynamic phase transition in the limit of the infinite lattice at a
certain temperature Tc depending on γ1, γ2.

Define a 2-spin correlation function by the expression

< σ00σnn >= lim
M,N→∞

1

Z(T )

∑

{σ}

σ00σnne
−E({σ})/T . (1.12)

For large n, this function measures the long-range order in the lattice at a tempera-
ture T , which determines magnetization. Indeed one can show that the spontaneous
magnetization M is given by the expression

M =
√

lim
n→∞

< σ00σnn >. (1.13)

It is a remarkable fact that the 2-spin correlation function is a Toeplitz determinant

< σ00σnn >= ent/2Dn(t), f(z; t) = (z − et)−1/2(z − e−t)1/2z−1/2eiπ/2, (1.14)

where

et = sinh
2γ1
T

sinh
2γ2
T
, (1.15)
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and the branches of the roots are chosen with the arguments from 0 to 2π. The symbol
in (1.14) has the form (1.7) with

α = 0, β = −1

2
, V (z) ≡ 0. (1.16)

The critical temperature Tc is defined by the condition that t = 0.
For T < Tc we have t > 0. Therefore the strong Szegő limit theorem (1.9) holds,

and using the elementary identity

∞∑

k=1

e−2kt/k = − ln(1− e−2t), (1.17)

we rederive the well-known result

ent/2Dn(t) = (1− e−2t)1/4(1 + o(1)) =
[
1−

(
sinh

2γ1
T

sinh
2γ2
T

)−2
]1/4

(1 + o(1)), as n→ ∞, T < Tc. (1.18)

The correlations tend to a constant as n→ ∞: the model exhibits the long-range order.
Notice that by (1.13), the asymptotics (1.18) imply the existence of the spontaneous
magnetization for T < Tc and the famous power-law decay of the magnetization M ∼
Const · (Tc − T )1/8 as T ր Tc.

At T = Tc, we have t = 0, and therefore a Fisher-Hartwig singularity with the
parameters α = 0, β = −1/2 appears at z = 1. In this case, (1.5) holds and we obtain
(cf. [32, 29])

Dn(0) =

√
πG(1/2)2

n1/4
(1 + o(1)), (1.19)

so the correlations decrease as n−1/4, n→ ∞: the long-range order is destroyed. Note
that as V (z) ≡ 0, there is an explicit expression for Dn(0) (cf. the remark following
(1.5,1.6)):

Dn(0) =

(
2

n

)n n−1∏

k=1

(
1− 1

4k2

)k−n

.

For T > Tc we have t < 0. The symbol still has a singularity at z = 1 but now
with the parameters α = 0, β = −1. This is the situation of a degenerate type of a
Fisher-Hartwig singularity, and (1.5) does not hold in this case as one of the G-functions
vanishes. Calculations [32] show an n−1/2ent decay of the correlations (1.12) as n→ ∞.
There is no long-range order and M = 0.

The transition T → Tc for large n was studied in [36, 30, 34] (for a more general
correlation function < σ00σnm >). The authors took n → ∞ with x = n(e2t − 1) fixed
and found, in particular, that in this limit

n1/4 < σ00σnn >→ F (x), (1.20)

where F (x) is given in terms of a solution to Painlevé III equation (reducible to Painlevé
V: see equation (1.28) below). Moreover, in [30], McCoy, Tracy and Wu evaluated
the connection formulae for this Painlevé III function and showed that the limiting
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behavior of F (x) as x → ∞ and as x → 0 formally matches the asymptotics (1.18)
and (1.19), respectively. The matching with (1.19) was, however, checked only up
to a multiplicative constant. A more detailed evaluation of the small x behavior of
the function F (x) was carried out later by Tracy in [34], and reproduced exactly the
constant in the critical point asymptotics (1.19). The calculations of [30] and [34]
were based on an alternative representation of the function F (x) as an infinite series of
integrals and were rather involved.

The results of the present paper, namely a particular case of Theorem 1.4 below,
fully describe (up to a possibility of a finite number of poles: see below) the transition of
the correlation function (1.12) for large n from T < Tc to T = Tc, that is the transition
from (1.18) to (1.19). Note that we do not rely on (1.20) as the parameter x in our
analysis is not necessarily fixed, in fact, our asymptotics for the correlation function are
uniform in the whole range x ∈ [0,∞) (away from a finite number of positive points).
More precisely, our asymptotics as n → ∞ are uniform for all T ∈ [T1, Tc] (away from
a finite number of positive x’s) for some T1 < Tc with Tc − T1 sufficiently small.

The description of the Ising double scaling theory which we obtain as a particular
case of Theorem 1.4 is in agreement with the classical results of [36, 30, 34] (see also
Remark 1.7 below). Furthermore, by obtaining the uniform asymptotics for the whole
transition range of temperatures T ≤ Tc, we complement the analysis of this case of
the Wu-McCoy-Tracy-Barouch scaling theory.

Another example where Theorems 1.1, 1.4 below can be applied is the so-called
emptiness formation probability in a Heisenberg spin chain [20].

1.2 Statement of results

Consider the second order ODE

(
x
d2σ

dx2

)2

=

(
σ − x

dσ

dx
+ 2

(
dσ

dx

)2

+ 2α
dσ

dx

)2

− 4

(
dσ

dx

)2(dσ
dx

+ α+ β

)(
dσ

dx
+ α− β

)
. (1.21)

This is the Jimbo-Miwa-Okamoto σ-form [25, 26] of the fifth Painlevé equation

uxx =

(
1

2u
+

1

u− 1

)
u2x −

1

x
ux +

(u− 1)2

x2

(
Au+

B

u

)
+
Cu

x
+D

u(u + 1)

u− 1
, (1.22)

with the parameters A,B,C,D given by

A =
1

2
(α− β)2, B = −1

2
(α+ β)2, C = 1 + 2β, D = −1

2
. (1.23)

In the following theorem, we give the asymptotic expansion for the Toeplitz deter-
minant with symbol (1.7) as n → ∞ which is valid uniformly for 0 < t < t0. Our
asymptotic expansion interpolates between Szegő and Fisher-Hartwig asymptotics.

Theorem 1.1 Let α ∈ R, α > −1
2 , β ∈ iR. Let f be defined by (1.7) and consider

the Toeplitz determinant Dn(t) defined by (1.1) corresponding to this symbol. The
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following asymptotic expansion holds as n → ∞ with the error term O(1/n) uniform
for 0 ≤ t < t0 where t0 is sufficiently small:

lnDn(t) = nV0 + (α+ β)nt+
∞∑

k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]

+ ln
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
+ Ω(2nt) +O(1/n), (1.24)

where G(z) is Barnes’ G-function, and

Ω(2nt) =

∫ 2nt

0

σ(x)− α2 + β2

x
dx+ (α2 − β2) ln 2nt. (1.25)

The function σ(x) is a particular solution to the equation (1.21) which is real analytic
on (0,+∞), and has the following asymptotics for x > 0:

σ(x) =





α2 − β2 + α2−β2

2α {x− x1+2αC(α, β)}(1 +O(x)), x→ 0, 2α /∈ Z

α2 − β2 +O(x) +O(x1+2α) +O(x1+2α lnx), x→ 0, 2α ∈ Z

x−1+2αe−x −1
Γ(α−β)Γ(α+β)

(
1 +O

(
1
x

))
, x→ +∞,

(1.26)

with

C(α, β) =
Γ(1 + α+ β)Γ(1 + α− β)

Γ(1− α+ β)Γ(1 − α− β)

Γ(1− 2α)

Γ(1 + 2α)2
1

1 + 2α
, (1.27)

where Γ(z) is Euler’s Γ-function.

Remark 1.2 Later on, we will construct σ(x) explicitly in terms of a Riemann-Hilbert
problem.

Remark 1.3 With increasing effort, one can calculate more terms in the expansion
(1.24) using our approach.

The function σ = σ(x;α, β) is defined for x ∈ C with a cut from zero to infinity. It
is analytic in the cut plane apart from possible poles. Asymptotics (1.26) imply that
there are no poles for x positive and sufficiently large. Hence the number of possible
poles of σ(x) on (0,+∞) is finite. We show below that for α > −1

2 real, β imaginary,
there are no poles on the real half-axis (0,+∞). Therefore we took the intervals of the
real line as a path of integration in (1.25). For β arbitrary, Reα > −1/2, a similar
result holds, but we have to choose a path of integration in the complex plane avoiding
possible poles which we denote {x1, . . . , xℓ}. Namely, we have

Theorem 1.4 Let α, β ∈ C with Reα > −1
2 , α ± β 6= −1,−2, . . . , and let sδ denote

a sector −π/2 + δ < arg x < π/2 − δ, 0 < δ < π/2. Let f be defined by (1.7) and
consider the Toeplitz determinants Dn(t) defined by (1.1) corresponding to this symbol.
There exists a finite set {x1, . . . , xℓ} ∈ sδ (with ℓ = ℓ(α, β, δ) and xj = xj(α, β) 6= 0)
such that the expansion (1.24) holds uniformly for t ∈ sδ, |t| < t0 (with t0 sufficiently
small) as long as 2nt remains bounded away from the set {x1, . . . , xℓ}. The function
Ω is defined by (1.25), where the path of integration is chosen in sδ, connecting 0 with
2nt and not containing any of the points {x1, . . . , xℓ}. Moreover σ(x) solves the ODE
(1.21) and has the asymptotics in the mentioned sector given by (1.26).
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Remark 1.5 It follows from the representation (1.24) that the residue of 1
xσ(x) at

each of its poles in the sector −π/2 < arg x < π/2 is an entire number. Different
choices of the integration contour in (1.25) correspond, in general, to different branches
of lnDn(t). If α and β are such that 1

xσ(x) has a pole x, the determinant Dn(t) is zero
at 2nt = x (up to an O(1/n) error term).

Remark 1.6 From now on, we will always consider t ≥ 0 for simplicity. The extension
to t ∈ sδ is straightforward.

Remark 1.7 In the example of the Ising model discussed in the previous section, we
have α = 0, β = −1/2 (see 1.16), and equation (1.21) becomes

(
x
d2σ

dx2

)2

=

(
σ − x

dσ

dx
+ 2

(
dσ

dx

)2
)2

− 4

(
dσ

dx

)2
((

dσ

dx

)2

− 1

4

)
. (1.28)

This is exactly the equation which was obtained in [26] for the function

ζ(x) ≡ x
d

dx
lnF (x)− 1

4
, (1.29)

where F (x) is the right hand side of the Ising double scaling limit (1.20) (see also
equation (4.16), with r = x/2, in [29]). It follows immediately from our main result
(1.24) that the function ζ(x) in [26] and our function σ(x) coincide:

ζ(x) = σ(x). (1.30)

Thus the application of our Theorem 1.4 to the Toeplitz determinant (1.14) yields the
complete analysis (up to the question of existence of a finite number of positive poles
xj) for T ≤ Tc of the Jimbo-Miwa Painlevé V version of the Wu-McCoy-Tracy-Barouch
scaling theory for the 2D Ising model.

From the expansion (1.24), we can recover the Fisher-Hartwig asymptotics for
lnDn(0). Let t → 0, and n fixed in (1.24). Then, using (1.25) and (1.26), we ob-
tain that Ω(2nt) = (α2 − β2) ln(2nt) + o(1) if Reα > −1

2 . Substituting this into (1.24)
and recalling (1.17), we obtain (1.5).

The expansion (1.24) should also be consistent with the Szegő asymptotics for t
fixed. We see immediately that the O(n) term gives, for a fixed t, the corresponding
term in the Szegő asymptotics. Consistency of the O(1) terms, however, yields an
interesting identity involving the Painlevé function σ(x) via (1.25):

Ω(+∞) = − ln
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
. (1.31)

1.3 The Painlevé V Riemann-Hilbert problem

We can say more about the function σ(x) than we did in Theorem 1.1: we can construct
it explicitly in terms of a Riemann-Hilbert (RH) problem. Consider the contour Γ =
∪6
j=1Γj in the complex plane (see Figure 1), with

Γ1 =
1

2
+ ei

π
4R

+, Γ2 =
1

2
+ ei

3π
4 R

+, Γ3 =
1

2
+ ei

5π
4 R

+,

Γ4 =
1

2
+ ei

7π
4 R

+, Γ5 = (1,+∞), Γ6 = (0, 1),

with Γ1, . . . ,Γ5 oriented towards infinity and Γ6 oriented to the right. Let Reα > −1
2

and consider the following RH problem for Ψ = Ψ(ζ;x, α, β).
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I

	

(
1 eπi(α−β)

0 1

)(
1 0

−e−πi(α−β) 1

)

e2πiβσ3

(
1 0

eπi(α−β) 1

) (
1 −e−πi(α−β)

0 1

)e−πi(α−β)σ3

I

II

III

V

IV
Figure 1: The jump contour and jump matrices for Ψ.

RH problem for Ψ

(a) Ψ : C \ Γ → C
2×2 is analytic.

(b) Ψ has continuous boundary values on Γ\
{
0, 12 , 1

}
, and they are related as follows,

Ψ+(ζ) = Ψ−(ζ)

(
1 eπi(α−β)

0 1

)
, for ζ ∈ Γ1, (1.32)

Ψ+(ζ) = Ψ−(ζ)

(
1 0

−e−πi(α−β) 1

)
, for ζ ∈ Γ2, (1.33)

Ψ+(ζ) = Ψ−(ζ)

(
1 0

eπi(α−β) 1

)
, for ζ ∈ Γ3, (1.34)

Ψ+(ζ) = Ψ−(ζ)

(
1 −e−πi(α−β)

0 1

)
, for ζ ∈ Γ4, (1.35)

Ψ+(ζ) = Ψ−(ζ)e
2πiβσ3 , for ζ ∈ Γ5, (1.36)

Ψ+(ζ) = Ψ−(ζ)e
−πi(α−β)σ3 , for ζ ∈ Γ6, (1.37)

with σ3 =

(
1 0
0 −1

)
.

(c) Ψ has the following behavior as ζ → ∞ (for some matrices C1 = C1(x, α, β),
C2 = C2(x, α, β)),

Ψ(ζ) =

(
I +

C1

ζ
+
C2

ζ2
+O(ζ−3)

)
ζ−βσ3e−

x
2
ζσ3 . (1.38)

(d0) As ζ → 0,

Ψ(ζ) = O
(
|ζ|α−β

2 |ζ|−α−β

2

|ζ|α−β

2 |ζ|−α−β

2

)
. (1.39)

(d1) As ζ → 1,

Ψ(ζ) = O
(
|ζ − 1|−α+β

2 |ζ − 1|α+β

2

|ζ − 1|−α+β

2 |ζ − 1|α+β

2

)
. (1.40)

Furthermore Ψ is bounded near 1
2 .
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The RH conditions imply (by a standard argument) that the determinant of the solution
Ψ (which is, if it exists, unique) is identically equal to 1, and consequently we have
using (1.38) that trC1 = 0. Let us denote the matrix elements of C1 by

C1(x) =

(
q(x) r(x)
t(x) −q(x)

)
.

Define the functions v and u in terms of the matrix elements of C1:

v(x) =
α+ β

2
− q(x)− xr(x)t(x), (1.41)

u(x) = 1 +
xt

(2β + 1− x)t(x) + xt′(x)
. (1.42)

We will show in Section 4.3 below that

σ(x) =

∫ +∞

x
v(ξ)dξ (1.43)

is the function appearing in Theorem 1.1 and Theorem 1.4. The RH problem for Ψ
is a special case of the RH problem associated to the fifth Painlevé equation, see e.g.
[16, 18].

We prove the following.

Theorem 1.8 Let α, β ∈ C and Reα > −1
2 .

(i) The RH problem for Ψ is uniquely solvable for all x > 0 except possibly for a finite
number of positive x-values. We denote the x-values for which the RH problem
is not solvable by {x1, . . . , xk}, with xj = xj(α, β) and k = k(α, β).

(ii) If Imα = 0 and Re β = 0 the RH problem is solvable for all positive x-values.

(iii) The function v defined by (1.41) is analytic in (0,+∞)\{x1, . . . , xk}, and solves,
together with u defined by (1.42), the system

xux = xu− 2v(u− 1)2 + (u− 1)[(α − β)u− β − α], (1.44)

xvx = uv[v − α+ β]− v

u
(v − β − α). (1.45)

(iv) The function v has the asymptotics given by

v(x) =





−α2−β2

2α {1− (2α + 1)x2αC(α, β)}(1 +O(x)), x→ 0, 2α /∈ Z,

O(1) +O(x2α) +O(x2α lnx), x→ 0, 2α ∈ Z

x−1+2αe−x −1
Γ(α−β)Γ(α+β)

(
1 +O

(
1
x

))
, x→ +∞,

(1.46)

where C(α, β) is defined in (1.27).

In addition, we have

∫ +∞

0
v(x)dx = α2 − β2 (1.47)

if Imα = 0 and Re β = 0. In the general case, α, β ∈ C, Reα > −1
2 , equation

(1.47) holds up to addition of 2πim, m ∈ Z, with the path of integration avoiding
{x1, . . . , xk}.
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Part (iii) of the theorem follows from a standard Lax pair argument and was proved
in [18, 16] for a slightly different but equivalent RH problem. That proof applies to
our RH problem as well, and implies moreover that the RH solution is meromorphic
in x for x ∈ C \ {0}. We will come back to this in Section 4. We prove part (iv)
by performing the Deift-Zhou steepest descent analysis for the RH problem. This
asymptotic analysis also implies the solvability of the RH problem for large x and
small x, and by meromorphicity in x, this leads to the statement (i). We prove part
(ii) by applying the technique of a vanishing lemma to the RH problem for Ψ.

Remark 1.9 The system (1.44)-(1.45) is related to the Painlevé V equation: eliminat-
ing v, we easily verify that u solves the Painlevé V equation (1.22)-(1.23). Asymptotic
expansions as x→ 0 and as x→ ∞ for various solutions to the fifth Painlevé equation
and the system (1.44)-(1.45) were obtained in several works, see e.g. [1, 2, 3, 25, 31, 33].
The solution v which is of interest to us decays exponentially at +∞, is integrable near
0 if Reα > −1

2 , and it has no poles on (0,+∞) if α > −1
2 ∈ R and β ∈ iR. Note that

the asymptotics of σ(x) (1.26) follow from (1.46) and (1.47) by (1.43).

Outline of the paper

The proofs of Theorem 1.1 and Theorem 1.4 are based on a well-known connection be-
tween Toeplitz determinants and orthogonal polynomials on the unit circle. In Section
2, we obtain a differential identity for lnDn(t) in terms of the polynomials orthogonal
on the unit circle with weight f(z). In Section 3, we obtain large n asymptotics for
these orthogonal polynomials from a RH problem. The asymptotics will be given in
terms of a model RH problem which we study in detail in Section 4, where we also
give a proof of Theorem 1.8. In Section 5, we use the previously obtained asymptotics
for the orthogonal polynomials and the results of Section 4 to integrate the differential
identity for lnDn(t), which leads to Theorem 1.1 and Theorem 1.4.

Throughout the paper, we choose the branches of logarithms and roots correspond-
ing to arguments between 0 and 2π, unless stated otherwise.

2 RH problem for orthogonal polynomials and a differen-

tial identity for the Toeplitz determinants

Our analysis is based on a classical connection between Toeplitz determinants and
orthogonal polynomials. Assume that for some n > 0 Dn,Dn+1 6= 0, and define a
polynomial φn(z) in terms of the Fourier coefficients of f(z) as follows:

φn(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣∣∣

f0 f−1 · · · f−n

f1 f0 · · · f−n+1
...

...
...

fn−1 fn−2 · · · f−1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣

. (2.1)

The leading coefficient of φn is then equal to

χn =

√
Dn

Dn+1
. (2.2)
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There holds the orthogonality relation

1

2π

∫

C
φn(z)z

−jf(z)
dz

iz
= χ−1

n δjn, j = 0, 1, . . . n, (2.3)

where C is the unit circle oriented in the counterclockwise direction. Similarly, let
φ̂n(z) be defined by

φ̂n(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣

f0 f−1 · · · f−n+1 1
f1 f0 · · · f−n+2 z
...

...
...

fn fn−1 · · · f1 zn

∣∣∣∣∣∣∣∣∣
. (2.4)

Then φ̂n has the same leading coefficient χn as φn, and

1

2π

∫

C
φ̂n(z

−1)zjf(z)
dz

iz
= χ−1

n δjn, j = 0, 1, . . . , n. (2.5)

If Dn 6= 0 for n = 1, . . . (and we set D0 ≡ 1, φ0(z) = φ̂0(z) = 1/
√
D1), the sys-

tem of polynomials φn and φ̂n, n = 0, 1, . . . exists and can be characterized by the
orthonormality relations

1

2π

∫

C
φk(z)φ̂m(z−1)f(z)

dz

iz
= δkm, k,m = 0, 1, . . . . (2.6)

If the symbol f is positive on the unit circle C, it is a classical fact (which follows,
e.g., from the representation of a Toeplitz determinant as a multiple integral) that
Dn(f) > 0 for all n ≥ 0, and the system of orthogonal polynomials exists.

Assume that Dn−1,Dn,Dn+1 6= 0, t > 0, and define the function Y (z;n) as follows

Y (z) =

(
χ−1
n φn(z) χ−1

n

∫
C

φn(ξ)
ξ−z

f(ξ)dξ
2πiξn

−χn−1z
n−1φ̂n−1(z

−1) −χn−1

∫
C

φ̂n−1(ξ−1)
ξ−z

f(ξ)dξ
2πiξ

)
. (2.7)

Then Y is the unique solution of the following RH problem with a jump on the coun-
terclockwise oriented unit circle C.

RH problem for Y

(a) Y : C \ C → C
2×2 is analytic.

(b) Y+(z) = Y−(z)

(
1 z−nf(z)
0 1

)
, for z ∈ C.

(c) Y (z) = (I +O(1/z))

(
zn 0
0 z−n

)
, as z → ∞.

A general fact that orthogonal polynomials can be so represented as a solution
of a RH problem was noticed in [17] (for polynomials on the line) and extended for
polynomials on the circle in [4].

In the next section we will show that the RH problem for Y (z;n, t) is solvable (and
therefore the orthogonal polynomials exist and the coefficients χn are nonzero) for all
n larger than some n0(α, β) provided 2nt is bounded away from a certain finite set
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of points (in particular, Dn 6= 0). The number n0(α, β) is bounded for α and β in a
bounded set.

Our next aim is to express d
dt lnDn(t) in terms of the entries of the RH solution Y .

We prove the following.

Proposition 2.1 Let t > 0 and n ∈ N. Suppose that the RH problem for Y (z;n, t) is
solvable. Then the following differential identity holds:

d

dt
lnDn(t) = −(α+ β)et

(
Y −1 dY

dz

)

22

(et) + (α− β)e−t

(
Y −1dY

dz

)

22

(e−t). (2.8)

Proof. We will follow the approach of Its, Tracy, and Widom [24]. Let us start with
the expression

Dn(f) = det(I −Kn), (2.9)

where Kn is an integral operator acting on L2(C) with kernel

Kn(z, z
′) =

(z/z′)n − 1

z − z′
1− f(z′)

2πi
. (2.10)

This fact is easy to verify by considering the matrix expression for Kn in the basis {zk},
k = −∞, . . . ,∞. We have

d

dt
lnDn(f) =

d

dt
tr ln(I −Kn) = −tr (I −Kn)

−1 dKn

dt
. (2.11)

Since

df

dt
=

(
−α+ β

z − et
et +

α− β

z − e−t
e−t

)
f, (2.12)

we have

dKn

dt
= K(1)

n −K(2)
n , (2.13)

where

K(2)
n (z, z′) =

α− β

z′ − e−t

(z/z′)n − 1

z − z′
f(z′)

2πi
e−t (2.14)

and

K(1)
n (z, z′) = Λ1(z, z

′)− α+ β

z′ − et
(z/z′)n − 1

z − z′
1− f(z′)

2πi
et. (2.15)

Here

Λ1(z, z
′) =

α+ β

z′ − et
et

2πi

(z/z′)n − 1

z − z′
. (2.16)

The reason to single out Λ1 will soon become clear. By a residue calculation, we obtain

(Λ1Kn)(z, z
′) = (α+β)et

1− f(z′)

2πi

1

z − et

[
(z/z′)n − 1

z − z′
+

1

et − z′

(( z
et

)n
−
( z
z′

)n)]
.
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We can now rewrite (2.15) as follows:

K(1)
n (z, z′) = (Λ1(I −Kn))(z, z

′) + (α+ β)et
1− f(z′)

2πi

1− (z/et)n

(z − et)(z′ − et)
. (2.17)

Defining the following 2-component vectors

f̂(z) =

(
zn

1

)
, ĝ(z) =

1− f(z)

2πi

(
z−n

−1

)
, f̃(z) =

f̂(z)

z − et
, g̃(z) =

ĝ(z)

z − et
,

we can write (2.17) in the final form:

K(1)
n (z, z′) = (Λ1(I −Kn))(z, z

′) + (α+ β)et(e−ntf̃1(z)g̃2(z
′)− f̃2(z)g̃2(z

′)) (2.18)

On the other hand, let us define Fj = (I −Kn)
−1f̂j. Then

Fj(z)

z − et
−
∫

C

Kn(z, z
′)

z − et
Fj(z

′)dz′ = f̃j(z), j = 1, 2.

Noting that

Kn(z, z
′) =

f̂(z)T ĝ(z′)

z − z′
,

we can write the above equation in the form

Fj(z)

z − et
−
∫

C
Kn(z, z

′)
Fj(z

′)

z′ − et
dz′ +

∫

C
f̃(z)T ĝ(z′)

Fj(z
′)

z′ − et
dz′ = f̃j(z).

Applying (I −Kn)
−1 to both sides, we obtain

2∑

k=1

mjk(e
t)F̃k(z) =

1

z − et
Fj(z), j = 1, 2, (2.19)

where F̃k = (I −Kn)
−1f̃k and

mjk(e
t) = δjk −

∫

C
Fj(z)ĝk(z)

dz

z − et
, j, k = 1, 2. (2.20)

Thus we have for the 2-component vector (detm = 1, see [24])

F̃ (z) =
1

z − et
m−1(et)F (z) =

1

z − et

(
m22F1 −m12F2

−m21F1 +m11F2

)
. (2.21)

As is shown in ([24], Eq. (2.16) up to a different notation), the matrix m is related to
Y . For |z| > 1,

Y (z) =

(
m11z

n +m12 −m12z
−n

−m21z
n −m22 m22z

−n

)
. (2.22)

Using the definition F̃ = (I − Kn)
−1f̃ , equations (2.18), (2.21), (2.22), and the fact

that

tr Λ1 = (α+ β)
et

2πi

∫

C

ndz′

z′(z′ − et)
= −n(α+ β),

13



we easily obtain

tr ((I −Kn)
−1K(1)

n ) = (α+ β)et(Y11(e
t)Y ′

z22(e
t)− Y21(e

t)Y ′
z12(e

t)), (2.23)

where Y ′
z (e

t) stands for the derivative of Y (z) w.r.t. z evaluated at z = et.

Let us now compute the contribution of K
(2)
n . First, write K

(2)
n in the form

K(2)
n = Λ2−

α− β

z′ − e−t

(z/z′)n − 1

z − z′
1− f(z′)

2πi
e−t, Λ2 =

α− β

z′ − e−t

(z/z′)n − 1

z − z′
1

2πi
e−t.

We then obtain as above for K
(1)
n that

K(2)
n (z, z′) = (Λ2(I −Kn))(z, z

′) + (α− β)e−t 1− f(z′)

2πi

(e−t/z′)n − (z/z′)n

(z − e−t)(z′ − e−t)
. (2.24)

Defining the new vectors

f̃(z) =
f̂(z)

z − e−t
, g̃(z) =

ĝ(z)

z − e−t
, F̃k = (I −K)−1f̃k,

we can write (2.24) in the form:

K(2)
n (z, z′) = (Λ2(I −Kn))(z, z

′)+ (α−β)e−t(e−ntf̃2(z)g̃1(z
′)− f̃1(z)g̃1(z

′)) (2.25)

and obtain as above

F̃ (z) =
1

z − e−t

(
m22(e

−t)F1(z) −m12(e
−t)F2(z)

−m21(e
−t)F1(z) +m11(e

−t)F2(z)

)
. (2.26)

For |z| < 1, the matrix m is related to Y by the formula preceeding (3.21) in [24]:

Y (z) =

(
m11z

n +m12 m11

−m21z
n −m22 −m21

)
. (2.27)

Using the definition F̃ = (I − Kn)
−1f̃ , equations (2.25), (2.26), (2.27), and the fact

that tr Λ2 = 0, we finally obtain

tr ((I −Kn)
−1K(2)

n ) = (α− β)e−t(Y11(e
−t)Y ′

z22(e
−t)− Y21(e

−t)Y ′
z 12(e

−t)). (2.28)

Expressions (2.23) and (2.28) imply by (2.13) the statement of the Proposition. 2

3 Asymptotic analysis of the RH problem for orthogonal

polynomials

In this section, we apply the steepest descent method of Deift and Zhou [14] to the RH
problem for Y . We follow the strategy used in [4] for orthogonal polynomials on the unit
circle with a special weight function, and used in [12, 13] for orthogonal polynomials on
the real line with respect to a more general weight function. The most important new
feature here is the construction of a local parametrix near 1 which involves a Painlevé V
RH problem. We will obtain asymptotics for Y as n→ ∞, and therefore, asymptotics
of the r.h.s. of (2.8) in terms of Painlevé V functions.
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Figure 2: The contour Σ = Σ1 ∪ C ∪ Σ2 and the regions Ω1, . . . ,Ω4.

3.1 Normalization of the RH problem

Define

T (z) =

{
Y (z)z−nσ3 , as |z| > 1,

Y (z), as |z| < 1,
(3.1)

with Y given by (2.7). Then T satisfies a RH problem normalized at infinity.

RH problem for T

(a) T : C \ C → C
2×2 is analytic.

(b) T+(z) = T−(z)

(
zn f(z)
0 z−n

)
, for z ∈ C.

(c) T (z) = I +O(1/z) as z → ∞.

The diagonal elements of the jump matrix for T oscillate rapidly on the unit circle if n
is large. The next transformation turns the oscillatory behavior into exponential decay
on a deformed contour.

3.2 Opening of the lens

Note that one can factorize the jump matrix for T as follows,

JT (z) :=

(
zn f(z)
0 z−n

)

=

(
1 0

z−nf(z)−1 1

)(
0 f(z)

−f(z)−1 0

)(
1 0

znf(z)−1 1

)
. (3.2)

To make use of this factorization, consider the three counterclockwise oriented closed
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curves as shown in Figure 2. Let us write

J1(z) =

(
1 0

z−nf(z)−1 1

)
, (3.3)

JN (z) =

(
0 f(z)

−f(z)−1 0

)
, (3.4)

J2(z) =

(
1 0

znf(z)−1 1

)
, (3.5)

and define

S(z) =





T (z), in regions Ω1 and Ω4,

T (z)J1, in region Ω2,

T (z)J−1
2 , in region Ω3,

(3.6)

with Ω1,Ω2,Ω3 as indicated in Figure 2. Note that f is an analytic function in C \
([0, e−t] ∪ [et,+∞)), and we define Σ1, Σ2 so that the branch cuts are located in the
regions Ω1 and Ω4. As we can have t → 0, it is inevitable that Ω1 and Ω4 approach 1.
We choose Σ1 and Σ2 to go through 1 as in Figure 2. The function S(z) satisfies the
following RH problem.

RH problem for S

(a) S : C \ (Σ1 ∪C ∪ Σ2) → C
2×2 is analytic.

(b) S+(z) = S−(z)Jk(z), for z ∈ Σk, k = 1, 2,
S+(z) = S−(z)JN (z), for z ∈ C.

(c) S(z) = I +O(1/z), as z → ∞.

Note that the jump matrices J1 and J2 tend to the identity matrix on their respective
contours Σ1 and Σ2 as n→ ∞ except near 1.

We need to construct a parametrix dealing with the jump condition on the unit
circle and a local parametrix near 1.

3.3 Global parametrix away from 1

Ignoring the jumps on Σ1 and Σ2 and a neighborhood of 1, we consider the following
model problem.

RH problem for N

(a) N : C \ C → C
2×2 is analytic.

(b) N+(z) = N−(z)JN (z), for z ∈ C.

(c) N(z) = I +O(1/z), as z → ∞.

This problem is easily solved explicitly:

N(z) =




D(z)σ3

(
0 1

−1 0

)
, for |z| < 1,

D(z)σ3 , for |z| > 1,

(3.7)
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where the (Szegő) function D(z) is analytic and nonzero in C\C, tends to 1 as z → ∞,
and satisfies the jump condition D+(z) = D−(z)f(z) for z ∈ C. It is easy to verify that

D(z) =

{
(z − et)α+βe−iπ(α+β) exp

(∑∞
k=0 Vkz

k
)
, for |z| < 1,

(z − e−t)−α+βzα−β exp
(
−∑−1

k=−∞ Vkz
k
)
, for |z| > 1.

(3.8)

3.4 Local parametrix near 1

For 0 < t < t0 with t0 fixed but sufficiently small, we will now construct a parametrix
P satisfying the same jump conditions as S in a neighborhood U of 1 of a sufficiently
small fixed radius and a matching condition with N on the boundary ∂U .

Assume that Ψ(ζ) solves the RH problem of Section 1.3, and define

Φ(λ;x) = e
x
4
σ3x−βσ3Ψ(

λ

x
+

1

2
;x)G(λ;x)

1
2
σ3e±

πi
2
(α−β)σ3 , for ±Imλ > 0 (3.9)

respectively, with

G(λ;x) = (λ+
x

2
)−(α−β)(λ− x

2
)α+βeλe−πi(α−β), x > 0, (3.10)

where G is analytic in C \
(
(−∞,−x

2 ] ∪ [x2 ,+∞)
)
. We choose −π < arg(λ + x

2 ) < π
and 0 < arg(λ − x

2 ) < 2π. It is straightforward to check that Φ = Φ(λ;x) solves the
following RH problem for x > 0.

RH problem for Φ

(a) Φ : C \ ∪4
j=1e

πi(2j−1)
4 R

+ → C
2×2 is analytic, with the rays e

πi(2j−1)
4 R

+ oriented as
shown in Figure 3.

(b) Φ has continuous boundary values on ∪4
j=1e

πi(2j−1)
4 R

+ \ {0}, and they are related
by the jump conditions:

Φ+(λ) = Φ−(λ)

(
1 G(λ;x)−1

0 1

)
, as λ ∈ e

πi
4 R

+ ∪ e 7πi
4 R

+, (3.11)

Φ+(λ) = Φ−(λ)

(
1 0

−G(λ;x) 1

)
, as λ ∈ e

3πi
4 R

+ ∪ e 5πi
4 R

+. (3.12)

(c) Φ has the following behavior as λ→ ∞:

Φ(λ) = I +O(λ−1). (3.13)

(d) Φ is bounded near 0.

We will prove the following results.

Proposition 3.1 (i) If Reα > −1
2 , the RH problem for Φ is uniquely solvable for all

but possibly a finite number of positive x-values {x1, . . . , xk}, where xj = xj(α, β)
and k = k(α, β).

(ii) If α > −1
2 (Imα = 0) and Reβ = 0, the RH problem for Φ is (uniquely) solvable

for all x > 0.
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Figure 3: The jump contour and jump matrices for Φ.

(iii) If Reα > −1
2 , the asymptotic condition (3.13) for Φ is valid uniformly for x ∈

(0,+∞) provided that x remains bounded away from the set {x1, . . . , xk}.

Statements (i) and (ii) follow immediately from Theorem 1.8 (which will be proven in
Section 4). The third statement will follow from our asymptotic analysis of the RH
problem for Φ in Section 4.

We will now transform the jump matrices for Φ into the jump matrices for S near 1.
Note first that the off-diagonal entries of the jump matrices for Φ have branch points
at ±x

2 , and the ones for S at e±t. Let us therefore define a conformal mapping λ(z) in
a neighborhood of 1 which maps e−t to −x

2 , e
t to x

2 , and 1 to 0:

λ(z) =
x

2t
ln(z), z ∈ U . (3.14)

Here we take the branch of the logarithm such that ln z > 0 for z > 1, and the branch
cut is along the negative real axis. We will furthermore need that eλ(z) = zn, and
therefore set

x = 2nt. (3.15)

Let us choose the contours Σ1 and Σ2 near 1 in such a way that λ maps Σ1 ∪ Σ2

onto the jump contour ∪4
j=1e

πi(2j−1)
4 R

+ for Φ. We look for the parametrix P in the
form

P (z) = E(z)Φ(λ(z); 2nt)W (z), (3.16)

where E is an analytic function in U , and W is given by

W (z) =

{
−G(λ(z))− 1

2
σ3z

n
2
σ3f(z)−

1
2
σ3σ3, for |z| < 1,

G(λ(z))−
1
2
σ3z

n
2
σ3f(z)

1
2
σ3σ1, for |z| > 1,

(3.17)

with σ1 =

(
0 1
1 0

)
. Note that the branch points of G cancel the ones for f in U , and

W is analytic in U \ C.
If E is analytic in U , it is easy to check using (3.11)–(3.12) that P (z) satisfies the

same jump conditions as the matrix S with the jump matrices given in (3.3)–(3.5).
Since we evaluate Φ(λ;x) at x = 2nt, we need to impose the condition that 2nt does
not belong to the set {x1, . . . , xk} of values at which the RH problem for Φ is not
solvable.
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To fix E(z), let us consider the behavior of P on ∂U . From (3.14) one observes that
there exists c > 0 such that for any 0 < t < t0

|λ(z)| > cn, z ∈ ∂U. (3.18)

As n → ∞ and if 2nt stays bounded away from the set {x1, . . . , xk}, we can thus (by
Proposition 3.1) use the asymptotic behavior (3.13) for Φ to conclude that

P (z) = E(z)
(
I +O(n−1)

)
W (z), as n→ ∞, (3.19)

uniformly for 0 < t < t0 and z ∈ ∂U . If t0 is sufficiently small, we can assume that
e±t lie inside U and at a distance bounded from below away from ∂U . Then we obtain
from (3.17) and (3.10) that (here and in (3.22) below, O(1) is a scalar matrix element)

W (z) = n−βσ3





(
O(1) 0

0 O(1)

)
, |z| < 1

(
0 O(1)

O(1) 0

)
, |z| > 1

(3.20)

as n→ ∞ uniformly for 0 < t < t0 and uniformly for z ∈ ∂U \ C.
Now set

E(z) = N(z)W (z)−1. (3.21)

One verifies directly, using the jumps for N and W across C, that E is analytic in a
full neighborhood U of 1. Furthermore, by (3.20), (3.7),

E(z) =

(
0 O(1)

O(1) 0

)
nβσ3 (3.22)

as n→ ∞ uniformly for 0 < t < t0 and z ∈ ∂U .
Using this result and (3.19), we obtain the following matching condition on z ∈ ∂U :

P (z)N(z)−1 = E(z)
(
I +O(n−1)

)
E(z)−1 = I + n−βσ3O(n−1)nβσ3 . (3.23)

as n → ∞ uniformly for 0 < t < t0 and z ∈ ∂U . Note once again that the matching
holds true if 2nt remains bounded away from the set {x1, . . . , xk}.

Since P has the same jumps as S inside U and S(z)P (z)−1 = O(ln(z−1)) as z → 1
for t > 0, it follows that the singularity is removable and S(z)P (z)−1 is analytic in U .
For later use, we note that

E(et) = n−βσ3gσ3σ1, E(e−t) = n−βσ3hσ3σ1, (3.24)

with g and h given by

g =

(
sinh t

t

)−α−β

2

e−πiβetα exp

(
−1

2

−1∑

k=−∞

Vke
tk +

1

2

∞∑

k=0

Vke
tk

)
, (3.25)

h =

(
sinh t

t

)α+β

2

e−πiβ exp

(
−1

2

−1∑

k=−∞

Vke
−tk +

1

2

∞∑

k=0

Vke
−tk

)
. (3.26)
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3.5 Final RH problem

Define

R(z) =

{
nβσ3S(z)N(z)−1n−βσ3 , for z ∈ C \ U ,

nβσ3S(z)P (z)−1n−βσ3 , for z ∈ U .
(3.27)

Using the RH properties of S, N , and P , we obtain the following.

RH problem for R

(a) R is analytic in C \ ΣR, where ΣR is the union of ∂U and the parts of Σ1, Σ2

lying outside U (see Figure 4).

(b) R+(z) = R−(z)JR(z) for z ∈ ΣR, where

JR(z) = nβσ3P (z)N(z)−1n−βσ3 , for z ∈ ∂U , (3.28)

JR(z) = nβσ3N(z)Jk(z)N(z)−1n−βσ3 , for z ∈ Σk outside U, (3.29)

and Jk(z), k = 1, 2 are the jump matrices (3.3), (3.5) of S.

(c) As z → ∞, R(z) = I +O(z−1).

Using (3.3), (3.5), and (3.23), we observe a crucial fact:

JR(z) = I +O(n−1), for z ∈ ∂U , (3.30)

JR(z) = I +O(e−cn), for z ∈ ΣR \ ∂U , c > 0 (3.31)

as n→ ∞ uniformly in z and uniformly for 0 < t < t0 as long as 2nt remains bounded
away from the set {x1, . . . , xk}. Thus the jump matrix JR tends to the identity matrix
as n → ∞. The RH problem for R is therefore a so-called small-norm RH problem,
and by a standard analysis (see, e.g., [13]) we obtain the following statement.

Proposition 3.2 Let 0 < t < t0. Then

(i) The RH problem for R is solvable for n sufficiently large as long as 2nt remains
bounded away from the set {x1, . . . , xk}.

20



(ii) If n→ ∞,

R(z) = I +O(n−1), uniformly for z ∈ C \ ΣR (3.32)

and for 0 < t < t0 such that 2nt remains bounded away from the set {x1, . . . , xk}.

3.6 Asymptotics for d
dt
lnDn

Reversing the transformations S 7→ R, T 7→ S, and Y 7→ T by (3.1), (3.6), and
(3.27), we obtain the asymptotics for Y (z) under the conditions of Proposition 3.2. In
particular, we obtain

Y (z) = n−βσ3(I +O(n−1))nβσ3P (z)znσ3 , for z near et, (3.33)

Y (z) = n−βσ3(I +O(n−1))nβσ3P (z), for z near e−t. (3.34)

as n → ∞, uniformly for 0 < t < t0 if 2nt remains bounded away from {x1, . . . , xk}.
Using the definitions (3.7), (3.16), and (3.24), we find for P in the above formulas:

P (z) = E(z)Φ(z)W (z) = D(z)σ3W (z)−1Φ(z)W (z), for z near et, (3.35)

P (z) = E(z)Φ(z)W (z) = D(z)σ3

(
0 1
−1 0

)
W (z)−1Φ(z)W (z), for z near e−t.

(3.36)

We will now substitute the asymptotics we obtained for Y into the differential
identity (2.8) for lnDn(t). First, consider the case of z close to et. By (3.33), we obtain

Y −1Y ′
z =

nσ3
z

+z−nσ3P−1P ′
zz

nσ3+z−nσ3P−1(z)n−βσ3(I+O(n−1))−1O(n−1)′zn
βσ3P (z)znσ3 .

(3.37)

Using (3.35) and (3.17), we further obtain

P−1P ′
z = −σ3

A′
z

A
+W−1Φ−1Φ′

zW −W−1Φ−1σ3ΦW

(
A′

z

A
+
D′

z

D

)
, (3.38)

where we defined A(z) by the formula

W (z) = A(z)σ3σ1.

Expressions (3.17) and (3.8) give

A′
z

A
(et) =

α+ β

4
e−t +

α− β

4
e−t

(
1

t
+

e−t

sinh t

)
+

1

2
V ′
z(e

t); (3.39)

D′
z

D
(et) = − α− β

2 sinh t
e−2t −

−1∑

k=−∞

kVke
(k−1)t. (3.40)

Therefore, we finally have for the 22 matrix element of P−1P ′
z at the point et:

et(P−1P ′
z)22(e

t) =
α+ β

4
+
α− β

4

(
1

t
+

e−t

sinh t

)
+

1

2
etV ′

z(e
t) + et(Φ−1Φ′

z)11(e
t)−

(
α+ β

4
+
α− β

4

(
1

t
− e−t

sinh t

)
+

1

2
etV ′

z (e
t)−

−1∑

k=−∞

kVke
kt

)
(Φ−1σ3Φ)11(e

t).
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(3.41)

Now using the definition of W (z) it is easy to conclude that

nβσ3P (et) = Φ̂(t)nβσ3 ,

where Φ̂(t) is bounded in n as long as Φ(x2 ) is bounded. Thus, we obtained the asymp-
totic expression

et(Y −1Y ′
z )22(e

t) = −n+ et(P−1P ′
z)22(e

t) +
(
Φ̂−1(t)O(1/n)Φ̂(t)

)
22

(3.42)

uniformly for 0 < t < t0 as long as 2nt remains bounded away from the set {x1, . . . , xk},
with the second term on the r.h.s. given by (3.41).

Similar calculations at e−t give

e−t(Y −1Y ′
z)22(e

−t) = e−t(P−1P ′
z)22(e

−t) +
(
Φ̂−1(t)O(1/n)Φ̂(t)

)
22
, (3.43)

with

e−t(P−1P ′
z)22(e

−t) = −α− β

4
− α+ β

4

(
1

t
+

e−t

sinh t

)
+

1

2
e−tV ′

z (e
−t) + e−t(Φ−1Φ′

z)22(e
−t)−

(
α− β

4
+
α+ β

4

(
1

t
− e−t

sinh t

)
− 1

2
e−tV ′

z(e
−t) +

∞∑

k=1

kVke
−kt

)
(Φ−1σ3Φ)22(e

−t).

(3.44)

Collecting (3.42) and (3.43) together, substituting into (2.8), and noting that

Φ′
z =

n

z
Φ′
λ

gives

Proposition 3.3 Let

w(x) = −α+ β

2
(Φ−1Φ′

λ)11(x/2) +
α− β

2
(Φ−1Φ′

λ)22(−x/2). (3.45)

Then

d

dt
lnDn = (α+ β)n− α2 + β2

2
− α2 − β2

2

(
1

t
+

e−t

sinh t

)

−α+ β

2
etV ′

z(e
t) +

α− β

2
e−tV ′

z(e
−t) + 2nw(x)

+
α+ β

2

{
α+ β

2
+
α− β

2

(
1

t
− e−t

sinh t

)
+

∞∑

k=1

k(Vke
kt + V−ke

−kt)

}
(Φ−1σ3Φ)11(e

t)

−α− β

2

{
α− β

2
+
α+ β

2

(
1

t
− e−t

sinh t

)
+

∞∑

k=1

k(Vke
−kt + V−ke

kt)

}
(Φ−1σ3Φ)22(e

−t)

+O(1/n)Φ̃(x),

(3.46)

where the error term is uniform for 0 < t < t0 as long as 2nt remains bounded away
from the set {x1, . . . , xk}, and Φ̃(x) depends on Φ(x/2), Φ(−x/2), α, β only and is
bounded when these parameters are in a compact set.

In the next section, we will analyze the Painlevé functions Φ(λ). Namely, we will
obtain their behavior at x = 0 and ∞ which will be used in the last section to prove
Theorems 1.1 and 1.4.
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4 Model RH problem near z = 1 and the fifth Painlevé

equation

Recall the RH problem for Ψ stated in the introduction on the contour Γ given in
Figure 1 for x > 0 and Reα > −1

2 . In this section, we will analyze the Ψ-RH problem
asymptotically for x near zero and infinity and prove Theorem 1.8 and Proposition 3.1.
Moreover, we will give an explicit formula for w (defined by (3.45)) in terms of the
Painlevé V function v.

For simplicity, we will omit the dependence of Ψ on α, β, and x in our notation when
convenient. The behavior of Ψ near 0 and 1 can also be characterized in a different
way from conditions (1.39), (1.40). The following statement holds.

Proposition 4.1 Let Ψ = Ψ(ζ;x, α, β) satisfy the conditions (a), (b), (d0), and (d1)
of the RH problem for Ψ. Set

Ψ0(ζ) := Ψ(ζ)(ζ − 1)
α+β

2
σ3ζ−

α−β

2
σ3 . (4.1)

Then the function Ψ0 is analytic near 0 and near 1. The branch cuts for ζ−
α−β
2

σ3 and

(ζ − 1)
α+β

2
σ3 are chosen here along [0,+∞) and [1,+∞), respectively.

Proof. The fact that Ψ0 is analytic near 0 and 1 can be verified using the jump

conditions for Ψ for (ζ − 1)
α+β

2
σ3 and ζ−

α−β

2
σ3 . The isolated singularities at 0 and 1

are removable because of the conditions (d0) and (d1). 2

Recall the function Φ defined in terms of Ψ in (3.9)-(3.10). It satisfies the RH
problem given in Section 3.4.

We will now perform an asymptotic analysis of the RH problem for Φ as x→ +∞
and as xց 0.

4.1 Asymptotics for Φ as x → +∞
Consider Figure 5 and define

Φ̃(ζ;x) = Φ(xζ;x), (4.2)

for ζ outside of the two triangular regions A and B. In these regions set

Φ̃(ζ;x) = Φ(xζ;x)

(
1 G(xζ;x)−1

0 1

)
, in region B,

Φ̃(ζ;x) = Φ(xζ;x)

(
1 0

G(xζ;x) 1

)
, in region A.

Now Φ̃ is defined in such a way that it has its jumps only on the solid lines in Figure
5. We have

RH problem for Φ̃

(a) Φ̃ : C \ (Γ̂1 ∪ Γ̂2) → C
2×2 is analytic.

23



q q

− 1
2

0 1
2
q

�
�
��

@
@

@@

@
@
@@

�
�

��

A Bp
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

Γ̂2 Γ̂1

6 6

Figure 5: The jump contour for Φ̃.

(b) Φ̃ has continuous boundary values on Γ̂1 ∪ Γ̂2 related by the conditions:

Φ̃+(ζ) = Φ̃−(ζ)

(
1 G(xζ;x)−1

0 1

)
, for ζ ∈ Γ̂1, (4.3)

Φ̃+(ζ) = Φ̃−(ζ)

(
1 0

−G(xζ;x) 1

)
, as ζ ∈ Γ̂2. (4.4)

(c) Φ̃ has the following behavior as ζ → ∞,

Φ̃(ζ) = I +O(ζ−1). (4.5)

The jump matrices for Φ̃ are exponentially close to I as x → +∞ because of the
exponential factor in the definition of G (see (3.10)). Indeed, let us denote G

Φ̃
(ζ) the

jump matrix for the function Φ̃(z), i.e.

G
Φ̃
(ζ) =

(
1 G(xζ;x)−1

0 1

)
, ζ ∈ Γ̂1,

and

G
Φ̃
(ζ) =

(
1 0

−G(xζ;x) 1

)
, ζ ∈ Γ̂2.

Then, the following estimates hold:

||I −GΦ̃||L2(Γ̂)
, ||I −GΦ̃||L∞(Γ̂) < Ce−

x
2
(1−ǫ), 0 < ǫ < 1, C > 0, (4.6)

where
Γ̂ = Γ̂1 ∪ Γ̂2,

and we assume that the vertical parts of the contours Γ̂1 and Γ̂2 are given by the
equations Re ζ = 1/2− ǫ/2 and Re ζ = −1/2+ ǫ/2, respectively. Estimates (4.6) imply
that the RH problem for Φ̃ is a small-norm RH problem for large x and is therefore
solvable in a standard way (see e.g., [13]) for x sufficiently large. Moreover, the solution
Φ̃ admits the integral representation,

Φ̃(ζ) = I +
1

2πi

∫

Γ̂
ρ(ζ ′)

(
GΦ̃(ζ

′)− I
) dζ ′

ζ ′ − ζ
, (4.7)

with the function ρ(ζ) which is L2 - close to the identity, namely,

||I − ρ||L2(Γ̂)
< Ce−

x
2
(1−ǫ). (4.8)
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The large x solvability of the Φ̃–problem means that the RH problems for Φ and Ψ
are solvable for x sufficiently large as well. In addition, we have that

Φ̃(ζ;x) = I +O(
1

ζ
e−

x
2
(1−ǫ)), as x→ +∞. (4.9)

This estimate holds uniformly for ζ off the jump contour and this implies, in particular,
that the following asymptotics hold as x→ +∞:

Φ̃(±1

2
;x) = Φ(±x

2
;x) = I +O(e−

x
2
(1−ǫ)), (4.10)

Φ′
λ(±

x

2
;x) = O(e−

x
2
(1−ǫ)). (4.11)

Furthermore, (4.9) implies that

Φ(λ;x) = I +O(λ−1), as λ→ ∞, uniformly for x > C, C > 0. (4.12)

The integral representation (4.7) in conjunction with the estimate (4.8) allows to
evaluate the asymptotics for the Painlevé function v(x) defined in (1.41). Let C̃1 be
the first coefficient in the large ζ expansion of the function Φ̃,

Φ̃(ζ) = I +
C̃1

ζ
+O(ζ−2), ζ → ∞. (4.13)

(Note that this expansion is uniform for x > C, C > 0.) Recalling the relation between
the functions Φ̃, Φ, and Ψ, we obtain the following expression of the first coefficient C1

of the series (1.38) in terms of the coefficient C̃1,

C1 =
α+ β

2
σ3 + e−

x
4
σ3xβσ3C̃1x

−βσ3e
x
4
σ3 . (4.14)

Together with (1.41), this means that

v(x) = −C̃1,11 − xC̃1,12C̃1,21. (4.15)

On the other hand, from (4.7) we obtain

C̃1 = − 1

2πi

∫

Γ̂
ρ(ζ)

(
GΦ̃(ζ)− I

)
dζ, (4.16)

which leads to the estimate:

C̃1 = − 1

2πi

∫

Γ̂

(
GΦ̃(ζ)− I

)
dζ − 1

2πi

∫

Γ̂

(
ρ(ζ)− I

)(
GΦ̃(ζ)− I

)
dζ

= − 1

2πi

∫

Γ̂

(
G

Φ̃
(ζ)− I

)
dζ +O(e−x(1−ǫ)), 0 < ǫ <

1

2
. (4.17)

The estimate (4.17) implies the following asymptotic representations for the entries of
the matrix C̃1 as x→ +∞:

C̃1,12 = − 1

2πi

∫

Γ̂1

G(xζ;x)−1 dζ +O(e−x(1−ǫ))

= −x−2βe−
x
2
e−2πiβ

Γ(α+ β)
ψ(1 − α− β, 2 − 2β;x) +O(e−x(1−ǫ))

= −x−1+α−βe−
x
2
e−2πiβ

Γ(α+ β)

(
1 +O

(
1

x

))
, (4.18)
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(
1 eπi(α−β)

0 1

)(
1 0

−e−πi(α−β) 1

)

e2πiβσ3

(
1 0

eπi(α−β) 1

) (
1 −e−πi(α−β)

0 1

)e−πi(α−β)σ3

I’

II’

III’

V’

IV’
Figure 6: The jump contour and jump matrices for Ψ̂.

C̃1,21 =
1

2πi

∫

Γ̂2

G(xζ;x)−1 dζ +O(e−x(1−ǫ))

= x2βe−
x
2

e2πiβ

Γ(α− β)
ψ(1− α+ β, 2 + 2β;x) +O(e−x(1−ǫ))

= x−1+α+βe−
x
2

e2πiβ

Γ(α− β)

(
1 +O

(
1

x

))
, (4.19)

and

C̃1,11 = −C̃1,22 = O(e−
x
2
(1−ǫ)), (4.20)

where ψ(a, c;x) denotes the confluent hypergeometric function. The last estimate can
be improved with the help of the differential identity (4.96) which will be proven in
Section 4.3. Indeed, this identity implies that

d

dx
C̃1,11 = C̃1,12C̃1,21,

and hence

C̃1,11 = x−2+2αe−x 1

Γ(α− β)Γ(α+ β)

(
1 +O

(
1

x

))
. (4.21)

Substituting the estimates (4.18), (4.19), and (4.21) into the formula (4.15), we arrive
at the following asymptotic equation for the Painlevé function v(x):

v(x) = x−1+2αe−x −1

Γ(α− β)Γ(α + β)

(
1 +O

(
1

x

))
. (4.22)

4.2 Asymptotics for Ψ and Φ as x ց 0

Write ΨI, . . . ,ΨV for the analytic continuation of Ψ from the indicated in Figure 1
sectors I, . . ., V to C \ [0,+∞), respectively, and consider the function

Ψ̂(λ;x) := e
x
2
σ3x−βσ3 ×





ΨI(
λ
x + 1;x), for λ in region I’,

ΨII(
λ
x + 1;x), for λ in region II’,

ΨIII(
λ
x + 1;x), for λ in region III’,

ΨIV(
λ
x + 1;x), for λ in region IV’,

ΨV(
λ
x + 1;x), for λ in region V’,

(4.23)
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where the (modified) regions I’, . . ., V’ are indicated in Figure 6, so that Ψ̂ = Ψ̂(λ;x, α, β)
has jumps on a contour which is partially shifted compared to the one for Ψ(λ/x+ 1).
In particular, the intersection of the contour lines is now at λ = 0 instead of λ = −x/2.

From the RH problem for Ψ, one easily derives the RH conditions for Ψ̂.

RH problem for Ψ̂

(a) Ψ̂ : C \
(
e±

iπ
4 R ∪ R

+ ∪ [−x, 0]
)
→ C

2×2 is analytic.

(b) Ψ̂ has continuous boundary values on e±
iπ
4 R ∪ R

+ ∪ [−x, 0] \ {−x, 0}, and they
are related as follows (with the orientation of the contour as in Figure 6),

Ψ̂+(λ) = Ψ̂−(λ)

(
1 eπi(α−β)

0 1

)
, as λ ∈ e

iπ
4 R

+, (4.24)

Ψ̂+(λ) = Ψ̂−(λ)

(
1 0

−e−πi(α−β) 1

)
, as λ ∈ e

3iπ
4 R

+, (4.25)

Ψ̂+(λ) = Ψ̂−(λ)

(
1 0

eπi(α−β) 1

)
, as λ ∈ e

5iπ
4 R

+, (4.26)

Ψ̂+(λ) = Ψ̂−(λ)

(
1 −e−πi(α−β)

0 1

)
, as λ ∈ e

7iπ
4 R

+, (4.27)

Ψ̂+(λ) = Ψ̂−(λ)e
2πiβσ3 , as λ ∈ R

+, (4.28)

Ψ̂+(λ) = Ψ̂−(λ)e
−πi(α−β)σ3 , as λ ∈ (−x, 0). (4.29)

(c) As λ→ ∞,

Ψ̂(λ) =
(
I +O(λ−1)

)
λ−βσ3e−

1
2
λσ3 . (4.30)

(d0) As λ→ −x,

Ψ̂(λ) = O
(
|λ+ x|α−β

2 |λ+ x|−α−β

2

|λ+ x|α−β

2 |λ+ x|−α−β

2

)
. (4.31)

(d1) As λ→ 0 in sectors I’ and V’,

Ψ̂(λ) = O
(
|λ|−α+β

2 |λ|α+β

2

|λ|−α+β

2 |λ|α+β

2

)
. (4.32)

As λ → 0 in the other sectors, the behaviour of Ψ̂ is obtained by applying the

jump conditions to (4.32). Ψ̂(λ) = O(λ−
|α+β|

2 ) always holds.

For small values of x, we will now construct a global parametrix and a local parametrix
near 0 for Ψ̂ and match them on the boundary of an ε-neighborhood of λ = 0. These
constructions will lead to the uniform asymptotics for Ψ̂ and Ψ as xց 0.

4.2.1 Construction of the global parametrix

Consider a fixed ε-neighborhood Uε of λ = 0 containing, in particular, the [−x, 0] part
of the contour. Outside of this neighborhood, we expect to model Ψ̂ by the global
parametrix M =M(λ;α, β) independent of x and solving the following RH problem.
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RH problem for M

(a) M : C \
(
e±

πi
4 R ∪R

+
)
→ C

2×2 is analytic,

(b) M has continuous boundary values on e±
πi
4 R∪R

+ \{0} related by the conditions

M+(λ) =M−(λ)

(
1 eπi(α−β)

0 1

)
, as λ ∈ e

iπ
4 R

+, (4.33)

M+(λ) =M−(λ)

(
1 0

−e−πi(α−β) 1

)
, as λ ∈ e

3iπ
4 R

+, (4.34)

M+(λ) =M−(λ)

(
1 0

eπi(α−β) 1

)
, as λ ∈ e

5iπ
4 R

+, (4.35)

M+(λ) =M−(λ)

(
1 −e−πi(α−β)

0 1

)
, as λ ∈ e

7iπ
4 R

+, (4.36)

M+(λ) =M−(λ)e
2πiβσ3 , as λ ∈ R

+. (4.37)

(c) We have

M(λ) =
(
I +O(λ−1)

)
λ−βσ3e−

1
2
λσ3 , as λ→ ∞. (4.38)

We can solve this RH problem explicitly in terms of the confluent hypergeometric
function. Inspired by the constructions of [23, 11], we define

H(λ) :=

(
e−iπ(2β+α) 0

0 eiπ(β+2α)

)
e−

iπ
2
ασ3

(
λαψ(α + β, 1 + 2α, λ)eiπ(2β+α)

λ−αψ(1 − α+ β, 1 − 2α, λ)eiπ(β−3α) Γ(1+α+β)
Γ(α−β)

λαψ(1 + α− β, 1 + 2α, e−iπλ)eiπ(β+α) Γ(1+α−β)
Γ(α+β)

λ−αψ(−α − β, 1 − 2α, e−iπλ)e−iπα

)
e

iπα
2

σ3e−λσ3/2, α± β 6= −1,−2, . . . ,

(4.39)

where ψ(a, b, x) is the confluent hypergeometric function, and Γ(x) is Euler’s Γ-function.
Furthermore let

M(λ) =M1(λ) := H(λ)

(
1 −eπi(α−β)

0 1

)
, for 0 < arg λ < π

4 ,

M(λ) =M2(λ) := H(λ), for π
4 < arg λ < 3π

4 ,

M(λ) =M3(λ) := H(λ)

(
1 0

−e−πi(α−β) 1

)
, for 3π

4 < arg λ < 5π
4 ,

M(λ) =M4(λ) := H(λ)

(
1 0

2i sin π(α− β) 1

)
, for 5π

4 < arg λ < 7π
4 ,

M(λ) =M5(λ) := H(λ)

×
(

1 −e−πi(α−β)

2i sin π(α− β) −2ie−πi(α−β) sinπ(α − β) + 1

)
, for 7π

4 < arg λ < 2π.

Using known properties of the confluent hypergeometric function, one verifies as in [11]
that M satisfies the prescribed RH conditions.
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In order to match M later on with the local parametrix near zero that we construct
in the next section, we will now need to rewrite M in the form in which the structure
of its singularity at λ = 0 becomes more apparent.

Recall the following properties of the confluent hypergeometric function (see, e.g.,
[5]):

φ(a, c, z)

Γ(c)
=

eiπa

Γ(c− a)
ψ(a, c, z) +

e−iπ(c−a)

Γ(a)
ψ(c− a, c, e−iπz)ez, (4.40)

ψ(a, c, z) = z1−cψ(a− c+ 1, 2 − c, z), (4.41)

ψ(a, c, z) =
Γ(1− c)

Γ(a− c+ 1)
ϕ(a, c, z) +

Γ(c− 1)

Γ(a)
z1−cϕ(a− c+ 1, 2− c, z), c /∈ Z,

(4.42)

ϕ(a, c, z) = ezϕ(c− a, c,−z). (4.43)

where

ϕ(a, c; z) = 1 +

∞∑

n=1

a(a+ 1) · · · (a+ n− 1)

c(c+ 1) · · · (c+ n− 1)

zn

n!
, c 6= 0,−1,−2, . . . (4.44)

is an entire function. Let us focus on the region III’. Assume first that 2α 6= 0, 1, 2, . . .
(noninteger 2α combined with our general condition Reα > −1/2). Using the proper-
ties (4.40) and (4.41) for simplification of the first column of M3, and (4.42), (4.43) for
the second, we easily obtain

M3(λ) = E(λ)λασ3G3, 2α 6= 0, 1, . . . , α± β 6= −1,−2, . . . , (4.45)

with the branch of λ±α chosen with 0 < arg λ < 2π. Here

E(λ) = e−λ/2

(
e−iπ(α+β) Γ(1+α−β)

Γ(1+2α) ϕ(α + β, 1 + 2α, λ)

−e−iπ(α−β) Γ(1+α+β)
Γ(1+2α) ϕ(1 + α+ β, 1 + 2α, λ)

eiπ(α−β) Γ(2α)
Γ(α+β)ϕ(−α+ β, 1 − 2α, λ)

eiπ(α+β) Γ(2α)
Γ(α−β)ϕ(1 − α+ β, 1 − 2α, λ)

)
(4.46)

is entire, and G3 is the constant matrix

G3 =

(
1 c1
0 1

)
, c1 = −sinπ(α+ β)

sin 2πα
. (4.47)

Applying to (4.45) the jump conditions we readily obtain the general formulas

Mj(λ) = E(λ)λασ3Gj , j = 1, . . . , 5, 2α 6= 0, 1, . . . , α± β 6= −1,−2, . . . ,

(4.48)

with appropriate constant matrices Gj . In particular, G3 is given by (4.47) and

G1 =

(
1 + c1e

−iπ(α−β) −eiπ(α−β)

e−iπ(α−β) 0

)
. (4.49)

Consider now the case when 2α is an integer. In this case, the calculations for the
first column of M3 remain the same, whereas for the second column (note that (4.42)
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does not hold now) we use the known logarithmic formulas for the ψ-function. We then
obtain

Mj(λ) = Ẽ(λ)λασ3

(
1 γ(λ)
0 1

)
G̃j , j = 1, . . . , 5, (4.50)

γ(λ) =
(−1)2α+1

π
sinπ(α+ β) ln(λe−iπ), if 2α = 0, 1, . . . , (4.51)

where Ẽ(λ) is analytic at zero, and G̃j are constant matrices. In particular, G̃3 = I.

4.2.2 Construction of the local parametrix near 0

We construct a local parametrix P in Uε in such a way that it has the singularities and
jumps of Ψ̂ and matches with M to the main order in x on the boundary. We have
to consider the cases 2α /∈ Z and 2α ∈ Z separately because of the different behavior
of M at ∂Uε. As examination of the final formulas show (see (4.61), (4.64), (4.71),
and (4.72) below), our constructions in this section will be valid for all α, β such that
α± β 6= −1,−2, . . . This is exactly the restriction on M in the previous section. Some
preliminary expressions, however, are valid under stronger conditions α ± β /∈ Z (cf.
(4.56)). We do not mention these conditions as they disappear in the final formulas,
namely: the singularities in α, β of J and J̃ defined below cancel with the zeros of c0,
c2.

We first deal with the case when 2α 6= 0, 1, 2, . . . . Since we have a problem with
2 singular points with power-law behaviour at −x and 0 and require a power-law be-
haviour at the boundary ∂Uε (see (4.48)) we expect from the general principles (e.g.,
[16]) a parametrix in terms of the hypergeometric function. Indeed such a parametrix
was found by Jimbo [25] in the generic case of Painlevé V equation. Instead of trying
to specialize it to our situation, we provide a direct construction below. For 2α /∈ Z ,
define P = P (λ;x, α, β) in Uε by the expressions

P (λ) = Pj(λ), with j = 1 for λ in sector I’, j = 2 in sector II’, and so on, (4.52)

where

Pj(λ) = E(λ)

(
1 c0J(λ;x, α, β)
0 1

)
(λ+ x)

α−β

2
σ3λ

α+β

2
σ3Gj (4.53)

with the argument of the roots between 0 and 2π. Here E is given by (4.46), Gj are as
in (4.48),

J(λ;x, α, β) =
1

π

x1+2α

−λ
Γ(1 + α+ β)Γ(1 + α− β)

Γ(2 + 2α)
F (1, 1+α+β, 2+2α,−x/λ), (4.54)

c0 = −e2πiα sinπ(α+ β) sin π(α− β)

sin 2πα
, (4.55)

and F (a, b, c, z) is the hypergeometric function of z with parameters a, b, c. For c 6=
0,−1,−2, . . . , this function is represented by the standard series

F (a, b, c, z) = 1 +

∞∑

n=1

a(a+ 1) · · · (a+ n− 1)b(b + 1) · · · (b+ n− 1)

c(c+ 1) · · · (c+ n− 1)

zn

n!
,
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converging in the disk |z| ≤ r < 1 of any radius r < 1, and is extended to the analytic
function in the plane with a cut [1,+∞). Therefore, the function F (a, b, c,−x/λ), in
particular the one in (4.54), is analytic in λ-plane outside [−x, 0]. We will now find the
jump of J(λ) on [−x, 0] and the structure of its singularities at −x and 0. First, using
the transformation of the hypergeometric functions from the one with the argument z
to those with the argument 1/z, we can write:

F (1, 1 + α+ β, 2 + 2α,−x/λ) =

− π

sinπ(α+ β)

Γ(2 + 2α)

Γ(1 + α+ β)Γ(1 + α− β)

(
λ

x

)1+α+β (
1 +

λ

x

)α−β

+
1 + 2α

α+ β

λ

x
F (1,−2α, 1 − α− β,−λ/x).

(4.56)

Since for λ ∈ (−x, 0) the hypergeometric function of the argument −λ/x is analytic,
we easily obtain from (4.54) and (4.56) that

J+(λ) = J−(λ) + 2i|λ|α+β |λ+ x|α−β , λ ∈ (−x, 0). (4.57)

By (4.48) we can write

P (λ) = E(λ)

(
1 c0J(λ)
0 1

)
(λ+ x)

α−β

2
σ3λ−

α−β

2
σ3E(λ)−1M(λ). (4.58)

Since the product of the factors to the left ofM is analytic in C\ [−x, 0], the expression
(4.58) implies directly that P satisfies the jump conditions for M , see (4.33)–(4.37),
except on (−x, 0) where M is analytic but P is not. For λ ∈ (−x, 0), it is convenient
to use (4.53), (4.47), and (4.57) to verify that

P+(λ) = P−(λ)e
−πi(α−β)σ3 .

This is only true if c0 is given by (4.55). We have thus constructed P in such a way
that it has exactly the jump conditions for Ψ̂.

From the fact that P and Ψ̂ have the same jumps, it follows that Ψ̂P−1 is analytic in
Uε except possibly at the points −x and 0. Let us investigate the behavior of Ψ̂P−1 near

these points in some detail. Recall that by Proposition 4.1 Ψ(ζ)ζ−
α−β
2

σ3(ζ − 1)
α+β
2

σ3 is

analytic at 0 and 1, which implies by (4.23) that Ψ̂0(λ) := Ψ̂(λ)(λ + x)−
α−β

2
σ3λ

α+β

2
σ3

is analytic at −x and 0. By (4.53), we have

Ψ̂(λ)P (λ)−1 = Ψ̂0(λ)(λ + x)
α−β

2
σ3λ−

α+β

2
σ3G−1

j (λ+ x)−
α−β

2
σ3λ−

α+β

2
σ3

×
(
1 −c0J(λ;x, α, β)
0 1

)
E(λ)−1. (4.59)

Consider first λ close to 0. Substituting (4.56) into (4.54), we obtain the following
representation

J(λ;x, α, β) =
λα+β(λ+ x)α−β

sinπ(α+ β)
−x2αΓ(α+ β)Γ(1 + α− β)

πΓ(1 + 2α)
F (1,−2α, 1−α−β,−λ/x).

(4.60)
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Therefore,

c0J(λ;x, α, β) = −e2πiα sinπ(α− β)

sin 2πα
λα+β(λ+ x)α−β + F0(λ),

F0(λ) = −x2αe2πiα sinπ(α− β)

π

Γ(1 + α− β)Γ(−2α)

Γ(1− α− β)
F (1,−2α, 1 − α− β,−λ/x).

(4.61)

Since F0(λ) is analytic close to λ = 0, this representation gives an explicit expression for
the singularity of J(λ) at 0. Substituting (4.61) into (4.59) we see that the singularity
cancels, and Ψ̂(λ)P (λ)−1 is analytic at λ = 0.

In order to analyze the singularity of J at λ = −x, apply first the transformation of
the hypergeometric function between arguments z and 1− z to (4.56). We then obtain:

F (1, 1 + α+ β, 2 + 2α,−x/λ) =
πe−2πiα

sinπ(α− β)

Γ(2 + 2α)

Γ(1 + α+ β)Γ(1 + α− β)

(
λ

x

)1+α+β (
1 +

λ

x

)α−β

−1 + 2α

α− β

λ

x
F (1,−2α, 1 − α+ β, 1 + λ/x),

(4.62)

and therefore by (4.54),

J(λ;x, α, β) = −e
−2πiαλα+β(λ+ x)α−β

sinπ(α− β)

+x2α
Γ(α− β)Γ(1 + α+ β)

πΓ(1 + 2α)
F (1,−2α, 1 − α+ β, 1 + λ/x).

(4.63)

Using (4.55), we obtain

c0J(λ;x, α, β) =
sinπ(α+ β)

sin 2πα
λα+β(λ+ x)α−β + F1(λ),

F1(λ) = x2αe2πiα
sinπ(α+ β)

π

Γ(1 + α+ β)Γ(−2α)

Γ(1− α+ β)
F (1,−2α, 1 − α+ β, 1 + λ/x).

(4.64)

This representation explicitly displays the singularity at −x because F1(λ) is analytic
near λ = −x. In the same way as for λ = 0, we now obtain that Ψ̂(λ)P (λ)−1 is analytic
at λ = −x as well.

For λ at a fixed distance away of the origin, say for λ ∈ ∂Uε, it follows from (4.58)
that

P (λ;x)M(λ)−1 = I +O(x) +O(x1+2α), as xց 0. (4.65)

We now consider the case 2α ∈ Z. We again set

P (λ) = Pj(λ), with j = 1 for λ in sector I’, j = 2 in sector II’, and so on, (4.66)

but now with

Pj(λ) = Ẽ(λ)

(
1 c2J̃(λ)
0 1

)
(λ+ x)

α−β
2

σ3λ
α+β
2

σ3

(
1 γ(λ)
0 1

)
G̃j , (4.67)
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where

c2 = − 1

π
sinπ(α+ β) sin π(α− β), (4.68)

J̃(λ;x, α, β) =
1

2

(
∂

∂α
+

∂

∂β

)
J(λ;x, α, β), (4.69)

with J(λ) given by (4.54).
Note that

J̃+(λ) = J̃−(λ) + 2i|λ|α+β |λ+ x|α−β ln |λ|, λ ∈ (−x, 0). (4.70)

A similar derivation to the one above shows that P again satisfies the same jump
conditions as the ones for Ψ̂. To analyze the structure of the singularities of P (λ) at 0
and at −x, we need, as above, to find suitable expressions for c2J̃(λ) at these points.
Applying the differential operator 1

2 (∂/∂α + ∂/∂β) to (4.60) (it is convenient to write

λα+β = eiπ(α+β)(e−iπλ)α+β first) and noting that

sinπ(α− β)

sinπ(α+ β)
= (−1)2α+1, 2α ∈ Z, β /∈ Z,

we obtain

c2J̃(λ;x, α, β) =

[
(−1)2α+1(λe−iπ)α+β − 1

π
sinπ(α− β)λα+β ln(λe−iπ)

]
(λ+ x)α−β + F̃0(λ)

F̃0(λ) = −c2
2

(
∂

∂α
+

∂

∂β

)[
x2α

Γ(α+ β)Γ(1 + α− β)

πΓ(1 + 2α)
F (1,−2α, 1 − α− β,−λ/x)

]
.

(4.71)

As above, this expression can be used to show that Ψ̂(λ)P (λ)−1 has no singularity at
λ = 0. To analyze a neighborhood of λ = −x, note that the first term on the r.h.s. of
(4.63) can be written as

− e−πi(α−β)

sinπ(α− β)
(e−iπλ)α+β(λ+ x)α−β,

and application of the operator 1
2(∂/∂α + ∂/∂β) to the fraction in the above formula

gives zero by antisymmetry in α and β. We finally obtain from (4.63)

c2J̃(λ;x, α, β) =
1

π
sinπ(α+ β)e−2παλα+β(λ+ x)α−β ln(λe−iπ) + F̃1(λ)

F̃1(λ) =
c2
2

(
∂

∂α
+

∂

∂β

)[
x2α

Γ(α− β)Γ(1 + α+ β)

πΓ(1 + 2α)
F (1,−2α, 1 − α+ β, 1 + λ/x)

]
,

(4.72)

which can be used to see that Ψ̂(λ)P (λ)−1 has no singularity at λ = −x.
It is easy to see that

P (λ;x)M(λ)−1 = I +O(x ln x), for λ ∈ ∂U , (4.73)

as xց 0.
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Note that using an integral representation for the hypergeometric function, we can,
if Re (α ± β) > −1, represent J(λ) and J̃(λ) in the following form, which makes the
jump conditions (4.57) and (4.70) obvious:

J(λ) =
1

π

∫ 0

−x

|ξ + x|α−β |ξ|α+β

ξ − λ
dξ, J̃(λ) =

1

π

∫ 0

−x

|ξ + x|α−β |ξ|α+β ln |ξ|
ξ − λ

dξ,

Re (α± β) > −1.

(4.74)

Now define

R(λ) =

{
Ψ̂(λ)M(λ)−1, for λ ∈ C \ Uε,

Ψ̂(λ)P (λ)−1, for λ ∈ Uε.
(4.75)

This function satisfies the following problem.

RH problem for R

(a) R is analytic in C \ ∂Uε.

(b) The jump condition for R is

R+(λ) = R−(λ)(I+e(λ)), for λ ∈ ∂U , with e(λ) = o(1) as xց 0. (4.76)

(c) R(λ) = I +O(λ−1) as λ→ ∞.

For x sufficiently small, this is a small-norm RH problem, and it follows that the RH
problem for R is solvable, say for 0 < x < δ. From the invertible transformations
Ψ 7→ Ψ̂ 7→ R and Ψ 7→ Φ, it follows that the RH problems for Ψ and Φ are solvable as
well for 0 < x < δ. We also have R(λ) = I + o(1) uniformly for λ ∈ C \ ∂U as x ց 0.
In particular this holds at infinity, which means that

R(λ) = I +O
(
1

λ

)
, as λ→ ∞, (4.77)

uniformly for small x. Tracing back the transformations Ψ 7→ Ψ̂ 7→ R and Ψ 7→ Φ, we
can conclude that

Φ(λ;x) = I +O(λ−1), as λ→ ∞, uniformly for 0 < x < δ. (4.78)

Moreover, using (4.61) we obtain for 2α /∈ Z

Φ(
x

2
;x)σ3Φ(

x

2
;x)−1 = e−xσ3/4R(0)E(0)

(
−1 2F0(0)
0 1

)
E(0)−1R(0)−1exσ3/4, (4.79)

where F0(λ) is defined in (4.61). Similarly,

Φ(−x
2
;x)σ3Φ(−

x

2
;x)−1 =

e−xσ3/4R(−x)E(−x)
(
1 −2F1(−x)
0 −1

)
E(−x)−1R(−x)−1exσ3/4,

(4.80)

where F1(λ) is defined in (4.64).
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Therefore, we have

Φ(±x
2
;x)σ3Φ(±

x

2
;x)−1 = O(1) +O(x2α), xց 0, 2α /∈ Z. (4.81)

Similarly, by (4.67), (4.71), (4.72),

Φ(±x
2
;x)σ3Φ(±

x

2
;x)−1 = O(1)+O(x2α)+O(x2α lnx), xց 0, 2α ∈ Z. (4.82)

We will now estimate w(x) given by (3.45) as x ց 0. First, using the connection
(3.9) between Φ and Ψ, we obtain

(Φ−1Φ′
λ)jj = (Ψ−1Ψ′

λ)jj −
(−1)j

2

(
α+ β

λ− x/2
− α− β

λ+ x/2
+ 1

)
, j = 1, 2. (4.83)

Expressing Ψ−1Ψ′
λ = Ψ̂−1Ψ̂′

λ, and using (4.75), and the formulas for P (λ), we obtain
after straightforward calculations that

(Φ−1Φ′
λ)11(x/2) = −α− β

x
+ (d1 + d2x

2α)(1 +O(x)), d1 =
α− β

2α
,

d2 =
α− β

1 + 2α

Γ(1 + α+ β)Γ(1 + α− β)

Γ(1− α+ β)Γ(1 − α− β)

Γ(−2α)

Γ(1 + 2α)2
, 2α /∈ Z.

(4.84)

Similarly,

(Φ−1Φ′
λ)22(−x/2) =

α+ β

x
+ (d̃1 + d̃2x

2α)(1 +O(x)), d̃1 = −α+ β

2α
,

d̃2 = − α+ β

1 + 2α

Γ(1 + α+ β)Γ(1 + α− β)

Γ(1− α+ β)Γ(1− α− β)

Γ(−2α)

Γ(1 + 2α)2
, 2α /∈ Z.

(4.85)

Substituting these expressions into (3.45), we obtain as xց 0:

w(x) =
α2 − β2

x
+
α2 − β2

2α

×
{
1− x2α

Γ(1 + α+ β)Γ(1 + α− β)

Γ(1− α+ β)Γ(1− α− β)

Γ(1− 2α)

Γ(1 + 2α)2
1

1 + 2α

}
(1 +O(x)), 2α /∈ Z.

(4.86)

Similarly, we verify using (4.67), (4.71), (4.72) that as xց 0,

w(x) =
α2 − β2

x
+O(1) +O(x2α) +O(x2α lnx), 2α ∈ Z. (4.87)

4.3 Differential system for Ψ

So far we know that there exist δ,M > 0 such that the RH problems for Ψ and Φ are
solvable for x > M and for 0 < x < δ. We will derive differential equations for Ψ with
respect to x and ζ. This will lead to the Painlevé V equation and will help us to find
an identity for the function w given by (3.45) in terms of v. Here we follow similar lines
as in [16, Section 5.4].

From the RH conditions for Ψ, it follows that, for any x for which the RH problem
is solvable, the (matrix) function A(ζ;x) = Ψζ(ζ;x)Ψ

−1(ζ;x) is a rational function in ζ
with simple poles at 0 and 1. Indeed, A is meromorphic because Ψ has constant jump
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matrices, A is bounded at infinity because of (1.38), and has simple poles at 0 and 1
because of (4.1). Similarly, B(ζ;x) = Ψx(ζ;x)Ψ

−1(ζ;x) is a polynomial of degree 1 in
ζ. It follows that Ψ satisfies a linear differential system of the form

Ψζ(ζ;x) =

[
A∞(x) +

A0(x)

ζ
+
A1(x)

ζ − 1

]
Ψ(ζ;x), (4.88)

Ψx(ζ;x) = [B1(x)ζ +B0(x)] Ψ(ζ;x). (4.89)

Substituting the large ζ-expansion (1.38) for Ψ into (4.88) and (4.89), we can express
the coefficient matrices A∞, A0, A1, B0, and B1 explicitly in terms of the entries of C1

and C2:

A∞ = −x
2
σ3, (4.90)

A0 =

(
−β + q + xrt −2βr − xh+ xrq + r + xr

2βt+ xj − xtq + t− xt β − q − xrt

)
, (4.91)

A1 =

(
−q − xrt 2βr + xh− xrq − r

−2βt− xj + xtq − t q + xrt

)
, (4.92)

B1 = −1

2
σ3, (4.93)

B0 =

(
0 r
−t 0

)
, (4.94)

where q = q(x), r = r(x), t = t(x), h = h(x), and j = j(x) are given by

C1(x) =

(
q(x) r(x)
t(x) −q(x)

)
, C2(x) =

(
∗ h(x)

j(x) ∗

)
(4.95)

(note that the trace of C1 must be zero since the determinant of Ψ is equal to 1).
Equating the O(1/ζ)-terms in Ψx = (B1ζ +B0)Ψ gives the identities

q′(x) = r(x)t(x), (4.96)

h(x) = −r′(x) + r(x)q(x), (4.97)

j(x) = t′(x) + t(x)q(x). (4.98)

Furthermore, equating the mixed derivatives Ψxζ = Ψζx leads to the compatibility
condition

Ax −Bζ + [A,B] = 0, [A,B] = AB −BA. (4.99)

Let us follow [18, 16] and write

v(x) =
α+ β

2
− q(x)− xq′(x) =

α+ β

2
− q(x)− xr(x)t(x), (4.100)

y(x) =
v(x)

(−2β − 1)t(x) − xt′(x)
, (4.101)

u(x) = 1 +
xt

(2β + 1− x)t(x) + xt′(x)
. (4.102)

Using Proposition 4.1 one shows as in [16] that detA0 = − (α−β)2

4 and detA1 = − (α+β)2

4 .
It then follows that the matrices A0, A1, andB0 can be written in the form (the elements
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(11), (22), and (21) of A0 and A1 are easy to verify directly, and (12) follows from the
expression for the determinant):

A0 =

(
−v + α−β

2 uy(v − α+ β)

− v
uy v − α−β

2

)
, (4.103)

A1 =

(
v − α+β

2 −y(v − α− β)
v
y −v + α+β

2

)
, (4.104)

B0 =
1

x

(
0 −y[v − α− β − u(v − α+ β)]

1
y [v − v

u ] 0

)
. (4.105)

Writing the compatibility condition (4.99) in terms of the functions u, v, y, one verifies
that u, v, and y solve the system of ODEs

xux = xu− 2v(u− 1)2 + (u− 1)[(α − β)u− β − α], (4.106)

xvx = uv[v − α+ β]− v

u
(v − β − α), (4.107)

xyx = y
{
−2v + α+ β + u[v − α+ β] +

v

u
− x
}
, (4.108)

which is part of the content of Theorem 1.8 (iii). Eliminating v from the first two
equations, one shows that u solves the Painlevé V equation (1.22)-(1.23).

Define

σ(x) = xq(x)− α+ β

2
x. (4.109)

It follows from (4.100) that

σ′ = −v, (4.110)

and therefore, by (4.107),

−xσ′′ = uv(v − α+ β)− v

u
(v − β − α). (4.111)

Moreover, in view of (4.96), we have that

σ − xσ′ = −x2q′ = −x2rt ≡ x2(B0)12(B0)21.

This equation can be rewritten with the help of (4.105) as

σ − xσ′ = −
(
v − α− β − u(v − α+ β)

)(
v − v

u

)

= uv(v − α + β) +
v

u
(v − β − α) − 2v2 + 2αv. (4.112)

Using (4.110), (4.111), and (4.112), we can check directly that the function σ(x) satisfies
the σ-form of the fifth Painlevé equation (1.21).

The system (4.88)-(4.89) is the Lax pair associated with Painlevé V. Since the RH
problem for Ψ(ζ;x, α, β) is solvable for 0 < x < δ and for x > M , the Lax matrices
A0(x;α, β), A1(x;α, β), and B0(x;α, β) exist for those values of x. However, the system
(4.106)-(4.108) has solutions which are meromorphic in C \ {0} with a cut from zero to
infinity, which implies that A0, A1, and B0 exist for all but (possibly) a finite number

37



of positive x-values. Using appropriately normalized solutions to (4.88)-(4.89), the RH
solution Ψ can also be constructed for all but possibly a finite number of positive x-
values [16]. This proves Theorem 1.8 (i) and the equivalent statement for Φ, Proposition
3.1 (i). Furthermore, the differentiability of Ψ with respect to x, see (4.89), implies
that the asymptotic condition (1.38), and thus also (4.38), holds uniformly as long as
δ ≤ x ≤ M if x remains bounded away from the set of x-values for which the RH
problem is not solvable. Together with (4.12) and (4.78), this proves Proposition 3.1
(iii).

Remark 4.2 The functions u, v, y appearing in (4.103)–(4.105) are particular solutions
to the system (4.106)–(4.108). Other solutions can be obtained by considering RH
problems for Ψ with modified jump matrices and modified behavior near 0 and 1,
corresponding to different monodromy data, see [2].

Remark 4.3 The RH problem for Ψ is not the standard RH problem related to the
fifth Painlevé equation. In [16, 18], a RH problem was posed on a contour U0 ∪U1 ∪ Γ̂,
where U0 and U1 are small circles surrounding 0, and 1, and where Γ̂ = R \ (U0 ∪ U1).
The equivalence of a particular case of this RH problem with ours can be verified
directly using Proposition 4.1. In order to avoid confusion with the notations in [16],
we note that the system (4.106)-(4.108) is written with parameters θ0, θ1, and θ∞ in
[16], which in our setting are given by

θ0 = −β − α, θ1 = α− β, θ∞ = 2β. (4.113)

Proposition 4.4 Set

a(ζ;x) =
(
Ψ(ζ;x)σ3Ψ

−1(ζ;x)
)
11
. (4.114)

Then the identities

α− β

2
a(0;x) = A0,11 = −v(x) + α− β

2
, (4.115)

α+ β

2
a(1;x) = −A1,11 = −v(x) + α+ β

2
, (4.116)

hold, with v defined as before by (1.41).

Proof. Substituting Ψ expressed from (4.1) into the differential equation

ΨζΨ
−1 = A∞ +

A0

ζ
+

A1

ζ − 1
,

and comparing the residue of the left- and right-hand side at 0 leads to an expression
for Ψ(ζ)σ3Ψ(ζ)−1 as ζ → 0, in terms of A0. By (4.103), this gives the first identity.
Comparing the residues at 1 gives the second identity. 2

Proposition 4.5 Let w be defined by (3.45). Then

v(x) = −(xw(x))′, (4.117)

σ(x) = xw(x), (4.118)

σ(x) =

∫ +∞

x
v(ξ)dξ. (4.119)
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Proof. It follows from Proposition 4.1 that Ψ can be written in the form

Ψ(ζ) = E(ζ)ζ
α−β

2
σ3 , Ψ(ζ) = F (ζ)(ζ − 1)−

α+β

2
σ3 , (4.120)

with E analytic near 0 and F analytic near 1. Let us write

E(ζ) = E0(I +E1ζ +O(ζ2)), as ζ → 0, (4.121)

F (ζ) = F0(I + F1(ζ − 1) +O((ζ − 1)2)), as ζ → 1. (4.122)

Substituting (4.120) and (4.121)–(4.122) into (4.89), we obtain the identities

E′
0,x = B0E0, E′

1,x = E−1
0 B1E0,

F ′
0,x = B0F0, F ′

1,x = F−1
0 B1F0,

which imply by Proposition 4.4, in particular, that

E′
1,22(x) = (E−1

0 B1E0)22 = (E0B1E
−1
0 )22 =

1

2
a(0;x), F ′

1,11(x) = −1

2
a(1;x).

(4.123)

On the other hand recalling equation (4.83), we obtain

(
Φ−1(−x

2
;x)Φ′

λ(−
x

2
;x)
)
22

= −1

2
+
α+ β

2x
+

1

x
E1,22, (4.124)

(
Φ−1(

x

2
;x)Φ′

λ(
x

2
;x)
)
11

=
1

2
− α− β

2x
+

1

x
F1,11. (4.125)

From (3.45), it follows that

w(x) = −α
2
+
α2 − β2

2x
+
α− β

2x
E1,22 −

α+ β

2x
F1,11, (4.126)

and by (4.123) together with Proposition 4.4 we obtain −(xw(x))′ = v(x). From
(4.110) and (4.117), it follows that σ(x) = xw(x) + constant, where σ is defined by
(4.109). To determine the constant, note first that, as follows from (4.14) and (4.17),
q(x) = C1,11 → (α + β)/2 as x → +∞, and hence, σ(x) → 0 as x → +∞. On the
other hand, as follows from (4.10), (4.11), we have xw(x) → 0 as x → +∞. Hence
the constant in question is zero, and we obtain (4.118). Equation (4.119) is obtained
similarly. 2

Combining (4.117), (4.86), (4.87), and (4.22), we obtain (1.46). The expressions
(4.86), (4.87), (4.118), and (4.119) imply (1.47).

Proposition 4.6 Let v be defined by (1.41). Then v(x) is real for x > 0 if Imα = 0,
α > −1

2 , and Reβ = 0.

Proof. Suppose that α > −1
2 , Reβ = 0, and that Ψ(ζ;x) is a solution to the RH

problem for Ψ given in Section 1.3. Then it is straightforward to verify that the function
Ψ̂ defined by

Ψ̂(ζ) := σ1Ψ(−(ζ − 1/2))σ1e
±πiβσ3 , if ±Im ζ > 0,
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with σ1 =

(
0 1
1 0

)
, solves the RH problem for Ψ(ζ + 1/2) for real x up to a constant

factor. Therefore, by uniqueness,

Ψ(ζ + 1/2) = C(x)σ3Ψ̂(ζ), (4.127)

where C(x) is independent of ζ. By (4.114), it follows that a(0;x) = a(1;x). Sub-
tracting the complex conjugate of (4.116) from (4.115), we conclude that v(x) = v(x).

2

4.4 Solvability of the RH problem for Ψ

In this section, we will prove Theorem 1.8 (ii) and Proposition 3.1 (ii): we will prove
that the RH problem for Ψ is solvable for all positive values of x if Re β = 0 and
Imα = 0, α > −1

2 .

4.4.1 Vanishing lemma for Painlevé V

For a general class of RH problems, it is known that solvability of a RH problem is
equivalent to the triviality of a homogeneous version of the RH problem [16, 19, 28]. For
the case of Painlevé V, this has been used in [18] for a slightly different but equivalent
RH problem (cf. Remark 4.3). In our case a sufficient (and necessary) condition to prove
the solvability of the RH problem for Ψ is given by the following so-called vanishing
lemma.

Lemma 4.7 (Vanishing lemma for Painlevé V) Let x > 0, Imα = 0, Re β = 0,
and suppose that Ψ0 satisfies the RH conditions (a), (b), (d0), and (d1) of the RH
problem for Ψ, with condition (c) replaced by the homogeneous asymptotic condition

Ψ0(ζ)e
x
2
ζσ3 = O(ζ−1), as ζ → ∞. (4.128)

Then it follows that Ψ0 ≡ 0.

Remark 4.8 A vanishing lemma was proven in [18] for a family of solutions to the
system (4.106)–(4.108). Our solution, however, is not contained in this family, and the
vanishing lemma requires a different proof in our case. For the proof of the vanishing
lemma, we follow similar lines as in [12, Section 5.3].

Proof of Lemma 4.7. Suppose we have a solution Ψ0 to the homogeneous RH
problem. We will then prove that Ψ0 ≡ 0. Let us first define a function M as follows,

M(ζ) = Ψ0(ζ +
1

2
)e

x
2
ζσ3 , if Re ζ < 0,

M(ζ) = Ψ0(ζ +
1

2
)e−πiβσ3e

x
2
ζσ3 , for Re ζ > 0, Im ζ > 0,

M(ζ) = Ψ0(ζ +
1

2
)eπiβσ3e

x
2
ζσ3 , for Re ζ > 0, Im ζ < 0.

Then M satisfies the following RH conditions.
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RH problem for M

(a) M is analytic in C \ (iR ∪ [−1
2 ,

1
2 ]).

(b) M satisfies the following jump conditions on the contour (iR ∪ (−1
2 ,

1
2)), with iR

oriented upwards and (−1
2 ,

1
2) oriented from left to right,

M+(ζ) =M−(ζ)V1(ζ), as ζ ∈ (0,+i∞), (4.129)

M+(ζ) =M−(ζ)V2(ζ), as ζ ∈ (−i∞, 0), (4.130)

M+(ζ) =M−(ζ)e
−πi(α−β)σ3 , as ζ ∈ (−1

2 , 0), (4.131)

M+(ζ) =M−(ζ)e
−πi(α+β)σ3 , as ζ ∈ (0, 12), (4.132)

with

V1(ζ) =

(
0 eπiαe−xζ

−e−πiαexζ e−πiβ

)
, (4.133)

V2(ζ) =

(
0 e−πiαe−xζ

−eπiαexζ eπiβ

)
, (4.134)

(c) For fixed x > 0,

M(ζ) = O(ζ−1), as ζ → ∞. (4.135)

(d0) As ζ → −1
2 ,

M(ζ) = O
(
|ζ + 1

2 |
α
2 |ζ + 1

2 |−
α
2

|ζ + 1
2 |

α
2 |ζ + 1

2 |−
α
2

)
. (4.136)

(d1) As ζ → +1
2 ,

M(ζ) = O
(
|ζ − 1

2 |−
α
2 |ζ − 1

2 |
α
2

|ζ − 1
2 |−

α
2 |ζ − 1

2 |
α
2

)
. (4.137)

Let us now define a function H(ζ) in terms of M and its Hermitian conjugate as
follows:

H(ζ) =M(ζ)M∗(−ζ). (4.138)

Because of the condition (c) of the RH problem for M , we have that H(ζ) = O(ζ−2)
as ζ → ∞. Furthermore, using the jump condition (4.131)–(4.132) for M , we obtain
that H has no jump across (0, 12 ). (This is only true if Reβ = 0, Imα = 0.) Therefore,
H is meromorphic for Re ζ > 0, with an isolated singularity at 1

2 , which is removable
because of (4.136) and (4.137). Using Cauchy’s theorem, we then have

∫ +i∞

−i∞
H−(ζ)dζ = 0,

∫ +i∞

−i∞
H∗

−(ζ)dζ = 0. (4.139)

Because of the jump conditions for M , the first integral implies that

∫ 0

−i∞
M−(ζ)V

∗
2 (ζ)M

∗
−(ζ)dζ +

∫ +i∞

0
M−(ζ)V

∗
1 (ζ)M

∗
−(ζ)dζ = 0. (4.140)
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Summing up this expression and the one obtained from the second integral in (4.139),
we find, using (4.133), (4.134) and the fact that x is real,
∫ 0

−i∞
M−(ζ)

(
0 0
0 2eπiβ

)
M∗

−(ζ)dζ+

∫ i∞

0
M−(ζ)

(
0 0
0 2e−πiβ

)
M∗

−(ζ)dζ = 0. (4.141)

Since Re β = 0, it follows immediately that the second column of M− is identically
zero on iR \ {0}. From the jump conditions (4.129)-(4.130), it then follows that the
first column of M+ is zero on iR \ {0} as well. Therefore, we have that Mj2(ζ) = 0 for
Re ζ > 0, and Mj1(ζ) = 0 for Re ζ < 0. Let us now define

gj(ζ) =

{
Mj2(ζ), as Re ζ < 0,

Mj1(ζ), as Re ζ > 0,
(4.142)

so that gj is analytic in C \ (iR∪ [−1
2 ,

1
2 ]). Furthermore, gj is bounded except near ±1

2 .
On iR, g has the following jump relation,

gj,+(ζ) = gj,−(ζ)×
{
eπiαe−xζ , as ζ ∈ (0,+i∞),

e−πiαe−xζ , as ζ ∈ (−i∞, 0).
(4.143)

Now we write ĝ for the analytic continuation of g from the left half plane to C\[−1
2 ,+∞),

ĝ(ζ) =





g(ζ), as Re ζ < 0,

g(ζ)eπiαe−xζ , as Re ζ > 0, Im ζ > 0,

g(ζ)e−πiαe−xζ , as Re ζ > 0, Im ζ < 0.

(4.144)

Set

h(ζ) = ĝ(−(ζ + 1)3/2). (4.145)

It is now easy to verify that h is analytic and bounded for Re ζ ≥ 0, and that h(ζ) =
O(e−x|ζ|) for ζ → ±i∞. By Carlson’s theorem, this implies that h ≡ 0 if x > 0. Tracing
back the previous steps, it follows that g ≡ 0, M ≡ 0, and Ψ0 ≡ 0, which proves the
vanishing lemma. 2

Remark 4.9 The proof of the vanishing lemma does not apply if either α is not real or
β is not purely imaginary. The first failure is that the function H would not be analytic
across (0, 12 ) in this case. A further problem in the proof would be that the matrices
V1+V

∗
1 and V2+V

∗
2 lose their symmetry, which results in non-zero off-diagonal entries

in (4.141). It is of course possible that the vanishing lemma can be proven in a different
way. Another possibility is that, given α and β, the RH problem is not solvable for
certain isolated values of x.

5 Asymptotics for Toeplitz determinants

Using the identities of Proposition 4.4 and the Fourier representation for V (z), we can
rewrite (3.46) in the form, with x = 2nt,

d

dt
lnDn = (α+ β)n− (α2 − β2)

e−t

sinh t
+ (α− β)

∞∑

k=1

kVke
−kt + (α+ β)

∞∑

k=1

kV−ke
−kt

+
1

t
σ(x)− v(x)

{
α+ α

(
1

t
− e−t

sinh t

)
+ 2

∞∑

k=1

k(Vk + V−k) cosh(kt)

}
+O(1/n)Φ̃(x).
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(5.1)

The expressions (4.86), (4.87), (4.118) yield the x → 0 expansion for σ in (1.26);
and the expressions (4.22), (4.119) imply the x→ +∞ expansion in (1.26).

Because of the uniformity property of the error term in (5.1), the integration of this
identity from ε > 0 to some t < t0 gives uniformly for any 0 < ε < t,

lnDn(t) = lnDn(ε) + (α+ β)n(t− ε) +

∞∑

k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]

−
∞∑

k=1

kVkV−k + (α− β)
∞∑

k=1

Vke
−kε + (α+ β)

∞∑

k=1

V−ke
−kε

+

[∫ 2nt

2nε

σ(x)

x
dx+ (α2 − β2) ln{n(1 − e−2ε)}

]
− (α2 − β2) lnn+Rn(t) +O(1/n);

Rn(t) = −
∫ t

ε
v(2nt)

{
α+ α

(
1

t
− e−t

sinh t

)
+ 2

∞∑

k=1

k(Vk + V−k) cosh(kt)

}
dt.

(5.2)

If α is real and β is imaginary, we can take as a path of integration the interval
[ε, t] of the real line as, according to Section 4.4, the functions σ(x) and v(x) are real
analytic for positive x. The estimates (1.26), (1.46) ensure integrability at x = 0 and
x = +∞. In particular, the term in the square brackets in (5.2) converges if ε→ 0.

For arbitrary β, Reα > −1/2, we can choose a path of integration and the end-
point t to avoid possible singular points {x1, . . . , xk}. The estimates (1.26), (1.46) were
obtained above for positive x. The restriction to real x was only imposed for simplicity
of notation. In fact, it is easy to verify that the estimates (1.26), (1.46) hold for any
path to zero and infinity within a sector −π/2 + δ < arg x < π/2 + δ, 0 < δ < π/2.

We have for Rn(t) in (5.2):

|Rn(t)| < C

∫ t

0
|v(2nu)|du = O(1/n), n→ ∞, 0 < t < t0. (5.3)

Now recall that (5.2) is uniform in ε, and lnDn(t) is continuous at t = 0. Therefore,
taking the limit ε → 0 in (5.2) and using the Fisher-Hartwig asymptotics (1.5) for
lnDn(0) gives the expression (1.24) of Theorem 1.1.

This concludes the proof of both Theorem 1.1 and Theorem 1.4.
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