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Abstract

We obtain asymptotic expansions for Toeplitz determinants corresponding to
a family of symbols depending on a parameter t. For ¢ positive, the symbols are
regular so that the determinants obey Szegd’s strong limit theorem. If ¢ = 0,
the symbol possesses a Fisher-Hartwig singularity. Letting ¢ — 0 we analyze
the emergence of a Fisher-Hartwig singularity and a transition between the two
different types of asymptotic behavior for Toeplitz determinants. This transition
is described by a special Painlevé V transcendent. A particular case of our result
complements the classical description of Wu, McCoy, Tracy, and Barouch of the
behavior of a 2-spin correlation function for a large distance between spins in the
two-dimensional Ising model as the phase transition occurs.

1 Introduction

Consider the Toeplitz determinant with symbol f(z) € LY(C), where C is the unit
circle:

- I 6 ,—ij
Do =det(f-aliclo  fi=57 | F)emVdb. (1.1)

We are interested in the behavior of D,, as n — oo.
If In f(z) is sufficiently smooth on the unit circle (in particular, f(z) is never zero
for 2 € C and has no winding around the origin) so that In f(z) € L'(C) and the sum

o) 21
;m(lnf)kﬁ, (In f)y = %/0 In £(e®)e=*0qp, (1.2)

converges, then the asymptotics of D,, are given by the strong Szegé limit theorem

22} 21, [25]:

2 0
In D, = %/ In f(e)do+ 3 k(n fe(in f)_y+0(1),  asn— oo (L3)
0 k=1

However, one often encounters a situation where the symbol possesses so-called
Fisher-Hartwig singularities. In the case of only one such singularity, located at z = 1,
the symbol has the form:

f(2) = [z=1*2Pe V() = (2-2cos H)O‘eiﬁ(e_”)ev(ew), for 0 < 6 < 2m, (1.4)
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where V' (z) is a sufficiently smooth function (see [11]) on the unit circle. The singularity
at z = 1 combines a jump-type (for & = 0, 5 # 0) and a root-type singularity (for 8 = 0,
a # 0). For this symbol the sum (I.2]) diverges, and therefore Szegd’s theorem does not
hold. The asymptotics for the Toeplitz determinant are given instead by the expression
[8L [35], 6, [15] [11]:

mDn—n%+§:M@Vk—(%— }:w—-a+ﬁ§jvk
k=1

Gl+a+p)G (1+oz—5)

+(® = %) Inn+1n G+ 20) +o(1), asn — oo, (1.5)
if
atB#-1,-2,.., (1.6)
with
1 2 '
Vi = 7 V(e?)e *0dp.

Here G is Barnes’ G-function, which is an entire function having the properties: G(z +
1) = I'(2)G(z), where I'(z) is Euler’s I'-function, and G(1) = 1, G(—k) = 0 for k =
0,1,2,.... Note that if V(z) = 0, there exists an explicit expression for D,, with symbol
|z — 1|2%2Pe=F in terms of G-functions [9, [10].

Suppose now that a symbol depends on a parameter ¢ (f(z) = f(z;t)) so that when
t > 0 the symbol is “regular”, i.e. Szegd’s theorem holds for D, (t), while at ¢ = 0 the
symbol has the form ([.4]). The purpose of the present paper is to study the transition
from (L3) to (LA) as t — 0. Namely, consider the following symbol

f(Z) — (Z . et)ori-ﬁ(z _ e—t)a—ﬁz—a-i-ﬁe—iw(a-i-ﬁ)eV(z)7 atfB#-1,-2,.. (17)

where t > 0 is sufficiently small and «, 8 € C with Rea > —%. We further assume that
V(z) is analytic in an annulus containing the unit circle and write it there in terms of
its Fourier series

+0o0o
= ) W (1.8)

k=—o0

We define the powers in (7)) with arguments between 0 and 27. With this choice
of branch cuts, f, and moreover In f, is analytic in C \ ([O,e_t] U [et, —I—OO)) and, in
particular, on the unit circle for ¢ > 0. Therefore, for any fixed £ > 0, the asymptotics
of the Toeplitz determinant D,, () are given by (L3]). Calculating the Fourier coefficients
(In f)g, we obtain

In D, (t) = nt(a + B) + nVy

e—tk

otk
—I—Zk‘[Vk— oz+ﬁ) } [V_k—(a—ﬁ)T +o(1), asn — oo, t > 0.
(1.9)

For t = 0, the symbol reduces to (I4]) (with analytic V). Therefore, for ¢t = 0, the
asymptotics of D, (t) are given by (LI]). In the present paper we describe the transition
from (L) to (L3) when ¢ decreases to 0.



The paper also sets the stage for analysis of various other transition asymptotics
for Toeplitz determinants, such as 2 singularities approaching each other; emergence of
an arc of the unit circle where the symbol f = 0 from 2 jump-type singularities at the
ends of the arc, etc.

Our analysis explains to some extent the question of connection between Painlevé
tau-functions and Toeplitz determinants which was noticed before: see [7] for a discus-
sion and references. Historically and as the most prominent example, this connection
appeared in the study of 2-spin correlation functions in the 2-dimensional Ising model.
We discuss this in the following section.

1.1 Application: the two-dimensional Ising model

Transitions between Szegé weights and Fisher-Hartwig weights arise for example in
the theory of solvable two-dimensional statistical models and one-dimensional Heisen-
berg spin chains. Recall the two-dimensional Ising model solved by Onsager (see, e.g.,
[32,29]). In this model a 2M x 2N rectangular lattice is considered with an associated
spin variable oj;, taking the values 1 and —1 at each vertex (j,k), —-M < j <M —1,
—N < k < N —1. There are 2*N possible spin configurations {0} of the lattice
(a configuration corresponds to values of all o) fixed). We associate with each con-
figuration the energy of the nearest-neighbor coupling (imposing the cyclic boundary
conditions on the lattice)

M-1 N-1

E{o}) == > Y (nopojen +720m05518), 72 > 0. (1.10)
v —

The partition function at a temperature 7' > 0 is equal to

Z(T) =Y e PUD/T, (1.11)
{0}

where the sum is over all configurations. A remarkable feature of this model is the
presence of a thermodynamic phase transition in the limit of the infinite lattice at a
certain temperature T, depending on 71, ¥s.

Define a 2-spin correlation function by the expression

oy 1 —E({o})/T
< 0000nn >= M}/{/'Igoo Z(T) {E;O'oodnne . (1.12)

For large mn, this function measures the long-range order in the lattice at a tempera-
ture 7', which determines magnetization. Indeed one can show that the spontaneous
magnetization M is given by the expression

M = h_)m < 0000nn > (1.13)

It is a remarkable fact that the 2-spin correlation function is a Toeplitz determinant
< 0000 >= "D, (1), f(z:t) = (2 — )7V (z — e )V2,7 12672 (1.14)

where

272

2
e! = sinh % sinh T (1.15)



and the branches of the roots are chosen with the arguments from 0 to 27. The symbol

in (ILI4) has the form (L) with
a=0, B=—-=, V(z)=0. (1.16)

The critical temperature T, is defined by the condition that ¢ = 0.
For T' < T, we have t > 0. Therefore the strong Szegd limit theorem (L9) holds,
and using the elementary identity

i ek = —In(1 — e, (1.17)

k=1

we rederive the well-known result

2D, (t) = (1 — e Y41 4 0(1)) =
_o71/4
[1 - (sinh % sinh 2—%2) ] (14 0(1)), asn — oo, T <T, (1.18)
The correlations tend to a constant as n — co: the model exhibits the long-range order.
Notice that by (L.I3]), the asymptotics (I.I8) imply the existence of the spontaneous
magnetization for T' < T, and the famous power-law decay of the magnetization M ~
Const - (T, — T)/® as T 7 T..

At T = T,, we have t = 0, and therefore a Fisher-Hartwig singularity with the
parameters o = 0, § = —1/2 appears at z = 1. In this case, (L5]) holds and we obtain
(cf. [32) 29])

JEG(1/2)?

D(0) = X552 (14 o(1)), (1.19)

so the correlations decrease as n=1/4, n — oco: the long-range order is destroyed. Note

that as V(z) = 0, there is an explicit expression for D,,(0) (cf. the remark following

(LAL4)):
o= (T (- )

For T' > T, we have t < 0. The symbol still has a singularity at z = 1 but now
with the parameters o = 0, § = —1. This is the situation of a degenerate type of a
Fisher-Hartwig singularity, and (IL5]) does not hold in this case as one of the G-functions
vanishes. Calculations [32] show an n~1/2e™ decay of the correlations (LIZ) as n — co.
There is no long-range order and M = 0.

The transition T' — T, for large n was studied in [36, B0, 34] (for a more general
correlation function < oggopnm >). The authors took n — oo with x = n(e? — 1) fized
and found, in particular, that in this limit

nM* < o000 >— F(z), (1.20)

where F(x) is given in terms of a solution to Painlevé III equation (reducible to Painlevé
V: see equation (28] below). Moreover, in [30], McCoy, Tracy and Wu evaluated
the connection formulae for this Painlevé III function and showed that the limiting



behavior of F(z) as x — oo and as # — 0 formally matches the asymptotics (IIS])
and (LI9), respectively. The matching with (LI9) was, however, checked only up
to a multiplicative constant. A more detailed evaluation of the small x behavior of
the function F'(z) was carried out later by Tracy in [34], and reproduced exactly the
constant in the critical point asymptotics (LI9). The calculations of [30] and [34]
were based on an alternative representation of the function F'(z) as an infinite series of
integrals and were rather involved.

The results of the present paper, namely a particular case of Theorem [L.4] below,
fully describe (up to a possibility of a finite number of poles: see below) the transition of
the correlation function (ILI2)) for large n from T' < T, to T' = T,, that is the transition
from (LI8) to (II9). Note that we do not rely on (L20) as the parameter z in our
analysis is not necessarily fixed, in fact, our asymptotics for the correlation function are
uniform in the whole range = € [0,00) (away from a finite number of positive points).
More precisely, our asymptotics as n — oo are uniform for all T' € [T1,T,] (away from
a finite number of positive x’s) for some 17 < T, with T, — T sufficiently small.

The description of the Ising double scaling theory which we obtain as a particular
case of Theorem [[4l is in agreement with the classical results of [36], 30, [34] (see also
Remark [[.7 below). Furthermore, by obtaining the uniform asymptotics for the whole
transition range of temperatures T' < 7., we complement the analysis of this case of
the Wu-McCoy-Tracy-Barouch scaling theory.

Another example where Theorems [I.1] [[.4] below can be applied is the so-called
emptiness formation probability in a Heisenberg spin chain [20].

1.2 Statement of results

Consider the second order ODE
2
Po\' _(  do , (do)\? , do
xala;2 —\° :de dx adm
do\? (do do
— 4 — — — — . (1.21
<d:17> <dm+a+5> <dx+a ﬁ) ( )

This is the Jimbo-Miwa-Okamoto o-form [25, 26] of the fifth Painlevé equation

12
um:<1 + ! )ui—lueru(AquE)Jr@JrDMa (1.22)
X u

20 u—1 2 z U —

with the parameters A, B, C, D given by

A=fa—pP  B=-j(a+BP. C=1+28 D=-.  (13)

In the following theorem, we give the asymptotic expansion for the Toeplitz deter-
minant with symbol (7)) as n — oo which is valid uniformly for 0 < t < ty. Our
asymptotic expansion interpolates between Szeg6 and Fisher-Hartwig asymptotics.

Theorem 1.1 Let a € R, o > —%, B € iR. Let f be defined by (I.7) and consider
the Toeplitz determinant D, (t) defined by (I.1) corresponding to this symbol. The



following asymptotic expansion holds as n — oo with the error term O(1/n) uniform
for 0 <t <ty where ty is sufficiently small:

0o —tk —tk
In D, (t) = nVy + (o + B)nt + Zk |:Vk —(a+ ﬁ)%} [V—k — (= 5)67
k=1
Gl+a+p)G1l+a—p)
+In Gl + 20) + Q(2nt) + O(1/n), (1.24)

where G(z) is Barnes’ G-function, and

Q(2nt) = /znt o@) -’45, + (o — %) In2nt. (1.25)
0 X

The function o(x) is a particular solution to the equation (I.21]) which is real analytic
on (0,400), and has the following asymptotics for x > 0:

o — 2+ P — 2000, 0)}(1+ O(2), ©—0, 20¢7
o(z) ={ o = B+ O(x) + O(x'+2) + 0@+ nz), =0, 20€Z (1.26)
e g (O (3)) % = oo,

Pl+a+B8(1+a—p) T(1-2a) 1
Fl—a+8)I(1—-a-B8)T(1+2a)?1+2a’

Cla, B) = (1.27)

where T'(z) is Euler’s T'-function.

Remark 1.2 Later on, we will construct o(z) explicitly in terms of a Riemann-Hilbert
problem.

Remark 1.3 With increasing effort, one can calculate more terms in the expansion
(I24) using our approach.

The function o = o(z;a, ) is defined for € C with a cut from zero to infinity. It
is analytic in the cut plane apart from possible poles. Asymptotics (L.26]) imply that
there are no poles for z positive and sufficiently large. Hence the number of possible
poles of (z) on (0,+00) is finite. We show below that for & > —1 real, 3 imaginary,
there are no poles on the real half-axis (0, +00). Therefore we took the intervals of the
real line as a path of integration in (L25]). For g arbitrary, Rea > —1/2, a similar
result holds, but we have to choose a path of integration in the complex plane avoiding
possible poles which we denote {z1,...,x,}. Namely, we have

Theorem 1.4 Let o, 8 € C with Rea > —%, atf #—-1,-2,..., and let s5 denote
a sector —m/2+ 0 < argz < w/2—6, 0 < d < /2. Let f be defined by (1I.7) and
consider the Toeplitz determinants D, (t) defined by (I.1) corresponding to this symbol.
There exists a finite set {x1,...,x¢} € ss (with £ = U, 3,6) and x; = x;(o, B) # 0)
such that the expansion (1.27) holds uniformly for t € ss,|t| < to (with to sufficiently
small) as long as 2nt remains bounded away from the set {x1,...,z;}. The function
Q is defined by (1.23), where the path of integration is chosen in ss, connecting 0 with
2nt and not containing any of the points {x1,...,xe}. Moreover o(x) solves the ODE

(L.21) and has the asymptotics in the mentioned sector given by (1.26]).



Remark 1.5 It follows from the representation (L24)) that the residue of 1o(z) at
each of its poles in the sector —7/2 < argax < 7/2 is an entire number. Different
choices of the integration contour in (I.25]) correspond, in general, to different branches
of In D,,(t). If o and B3 are such that 1o(z) has a pole z, the determinant Dy, () is zero
at 2nt = = (up to an O(1/n) error term).

Remark 1.6 From now on, we will always consider ¢ > 0 for simplicity. The extension
to t € s4 is straightforward.

Remark 1.7 In the example of the Ising model discussed in the previous section, we
have a =0, 8 = —1/2 (see [[.I0), and equation (L.2I]) becomes

<_>(_<_>>(_)(<_)> (129

This is exactly the equation which was obtained in [26] for the function

d 1
=z—InF(z)— - 1.2
() =2 F ()~ 1 (1.29)
where F(z) is the right hand side of the Ising double scaling limit (T.20) (see also
equation (4.16), with » = /2, in [29]). It follows immediately from our main result

(CZ4) that the function {(z) in [26] and our function o(z) coincide:
((x) =o(x). (1.30)

Thus the application of our Theorem [[4] to the Toeplitz determinant (LI4]) yields the
complete analysis (up to the question of existence of a finite number of positive poles
xj) for T' < T, of the Jimbo-Miwa Painlevé V version of the Wu-McCoy-Tracy-Barouch
scaling theory for the 2D Ising model.

From the expansion ([24]), we can recover the Fisher-Hartwig asymptotics for
In D, (0). Let t — 0, and n fixed in (L24). Then, using (L25) and (L26]), we ob-
tain that Q(2nt) = (a? — %) In(2nt) + o(1) if Rea > —%. Substituting this into (I.24])
and recalling (LI7), we obtain (LH]).

The expansion ([.24)) should also be consistent with the Szegé asymptotics for ¢
fixed. We see immediately that the O(n) term gives, for a fixed ¢, the corresponding
term in the Szegd asymptotics. Consistency of the O(1) terms, however, yields an
interesting identity involving the Painlevé function o(z) via (L25):

Gl+a+pB)G1l+a—p)
G(1+2a) '

Q(+00) = —In (1.31)

1.3 The Painlevé V Riemann-Hilbert problem

We can say more about the function o(x) than we did in Theorem [[.Tk we can construct
it explicitly in terms of a Riemann-Hilbert (RH) problem. Consider the contour I' =
U?zlfj in the complex plane (see Figure [Il), with

1 m 1 3m 1 5
Pl = §+€ZZR+, FQ = §+€ZBTR+, ng §+€ZTR+,

1
Ty=3+ dTRY,  Ts=(l,400), Tg=(0,1),

with I'y, ..., I's oriented towards infinity and I'g oriented to the right. Let Re v > —%
and consider the following RH problem for ¥ = ¥({; z, o, ).
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Figure 1: The jump contour and jump matrices for W.

Y

RH problem for ¥
(a) ¥:C\ T — C?*2 is analytic.

(b) W has continuous boundary values on I"\ {0 1}, and they are related as follows,

R

V() = - (Q) ((1) em(f_m> , for C T, (1.32)
W (C) = ¥_(0) (_e_ﬁ(a_m ?) , for ¢ €T, (1.33)
V() =T (Q) (em(i_m ?) , for ¢ € T, (1.34)
V4 (0) = U_(¢) (é ‘E_Wi(a_m> , for ¢ € Ty, (1.35)
U, (¢) = W_(¢)e¥ribos, for ¢ € T, (1.36)
T (¢) =T_(()emaPos, for ¢ € Tg, (1.37)

with o3 = (é _01>

(¢) ¥ has the following behavior as ( — oo (for some matrices C; = Ci(z,a, ),
Cy = 02(:177 «, B))v

U(¢) = <I + % + % + O(C‘3)> (Pose5C03, (1.38)
(d0) As ¢ — 0,
Iz m-“f>
\VJ =0 o o . 1.39
© <|<|TB o= -
(d1) As¢ —1,
R N ST
o= <r<— T 1\”) A

1

Furthermore ¥ is bounded near 3



The RH conditions imply (by a standard argument) that the determinant of the solution
U (which is, if it exists, unique) is identically equal to 1, and consequently we have
using (L38) that tr C1 = 0. Let us denote the matrix elements of C} by

aw =16 ")

Define the functions v and w in terms of the matrix elements of Cf:

v(x) = a ; B_ q(z) — zr(x)t(z), (1.41)
xt
U@ =1 BT o) T e ) (142)

We will show in Section [4.3] below that

o) = | Ry (1.43)

is the function appearing in Theorem [[.I] and Theorem [I.4l The RH problem for ¥
is a special case of the RH problem associated to the fifth Painlevé equation, see e.g.
[16], [18].

We prove the following.
Theorem 1.8 Let a, 5 € C and Rea > —%.

(i) The RH problem for U is uniquely solvable for all x > 0 except possibly for a finite
number of positive x-values. We denote the x-values for which the RH problem
is not solvable by {z1,...,z}, with v; = zj(c, B) and k = k(«, B).

(i) If Ima = 0 and Re 8 = 0 the RH problem is solvable for all positive x-values.

(i1i) The function v defined by (1.71) is analytic in (0,4+00) \{z1,..., 2k}, and solves,
together with u defined by (1.43), the system

zuy = zu — 20(u — 1)% + (u — 1)[(a — Bu — § — al, (1.44)
$vm:uv[v—a+ﬁ]—%(v—ﬁ—a). (1.45)

(iv) The function v has the asymptotics given by

—2B 0~ 20+ 1)a2C(a, Y1+ O@)), ©—0, 20¢7Z,

v(z) =< O(1) + O(2%*) + O(z** In ), x—0, 20€Z (1.46)
x_1+2ae_m7F(a_ﬁ;§(a+ﬂ) (1+0(1)), x — 400,

where C(a, B) is defined in (1.27).

In addition, we have

“+oo
/ v(x)dr = o? — 32 (1.47)
0
if Ima =0 and Re = 0. In the general case, o, € C, Rea > —%, equation
(1-47) holds up to addition of 2mim, m € Z, with the path of integration avoiding

{a:l,. .o ,xk}.



Part (iii) of the theorem follows from a standard Lax pair argument and was proved
in [I8] [16] for a slightly different but equivalent RH problem. That proof applies to
our RH problem as well, and implies moreover that the RH solution is meromorphic
in z for x € C\ {0}. We will come back to this in Section @l We prove part (iv)
by performing the Deift-Zhou steepest descent analysis for the RH problem. This
asymptotic analysis also implies the solvability of the RH problem for large x and
small z, and by meromorphicity in x, this leads to the statement (i). We prove part
(ii) by applying the technique of a vanishing lemma to the RH problem for .

Remark 1.9 The system (L.44])-(L.45]) is related to the Painlevé V equation: eliminat-
ing v, we easily verify that u solves the Painlevé V equation (L22))-(T.23]). Asymptotic
expansions as  — 0 and as x — oo for various solutions to the fifth Painlevé equation
and the system ([.44))- (I.45]) were obtained in several works, see e.g. [1}, 2, 3} 25| 311 33].
The solution v which is of interest to us decays exponentially at +o00, is integrable near
0 if Rea > —%, and it has no poles on (0, +0o0) if o > —% € R and 8 € iR. Note that

the asymptotics of o(z) (I.26)) follow from (L46]) and (L47) by (L43).

Outline of the paper

The proofs of Theorem [[LT] and Theorem [I.4] are based on a well-known connection be-
tween Toeplitz determinants and orthogonal polynomials on the unit circle. In Section
2, we obtain a differential identity for In D,,(¢) in terms of the polynomials orthogonal
on the unit circle with weight f(z). In Section [B] we obtain large n asymptotics for
these orthogonal polynomials from a RH problem. The asymptotics will be given in
terms of a model RH problem which we study in detail in Section Ml where we also
give a proof of Theorem [I[.8 In Section [l we use the previously obtained asymptotics
for the orthogonal polynomials and the results of Section Ml to integrate the differential
identity for In D,,(t), which leads to Theorem [[.T] and Theorem [T.4]

Throughout the paper, we choose the branches of logarithms and roots correspond-
ing to arguments between 0 and 27, unless stated otherwise.

2 RH problem for orthogonal polynomials and a differen-
tial identity for the Toeplitz determinants
Our analysis is based on a classical connection between Toeplitz determinants and

orthogonal polynomials. Assume that for some n > 0 D,, D,4+1 # 0, and define a
polynomial ¢,,(z) in terms of the Fourier coefficients of f(z) as follows:

foo fo1 o fon
i fo 0 fontr

oOn(2) = . : : (2.1)

o1 fa2 0 [

1 z e 2"

The leading coefficient of ¢,, is then equal to
Dy,

n = . 2.2
X Dn+1 ( )

10



There holds the orthogonality relation

L / (7T =X e, =01, (2.3)
v C 1z

where C' is the unit circle oriented in the counterclockwise direction. Similarly, let
®n(2) be defined by

foo for o fongr 1
. 1 fi fo o fonge 2

On(2) = —— 24
(2) VDnDpyr | : : 24
fn o oo 1 2"
Then ggn has the same leading coefficient y,, as ¢,, and
/ dn(z7 127 f( ) =Xn 0,  j=0,1,...,n. (2.5)

If Dy # 0 for n = 1,... (and we set Dy = 1, ¢o(2) = do(z) = 1/v/Dy), the sys-
tem of polynomials ¢, and ¢,, n = 0,1,... exists and can be characterized by the
orthonormality relations

dz
/ ¢k f(Z)E = 5kma k;,m = 0,1,.... (26)
If the symbol f is positive on the unit circle C| it is a classical fact (which follows,
e.g., from the representation of a Toeplitz determinant as a multiple integral) that
D, (f) > 0 for all n > 0, and the system of orthogonal polynomials exists.
Assume that D,,_1, Dy, D11 # 0, t > 0, and define the function Y (z;n) as follows

_ _ )d
Y(Z) _ ( Xn1¢n(z) ! fC E—z J;szﬁng > (2 7)
~Xn—-12""tpn_1(z7Y)  —xn-1 fc %lfi)%

Then Y is the unique solution of the following RH problem with a jump on the coun-
terclockwise oriented unit circle C.

RH problem for Y
(a) Y :C\ C — C?*2 is analytic.

(b) Vi) = Y_(2) <(1) = <Z>>, for 2 € C.

(©) Y(2) = (I+0(1/2)) <20" z9n>, 8 z = 0o,

A general fact that orthogonal polynomials can be so represented as a solution
of a RH problem was noticed in [I7] (for polynomials on the line) and extended for
polynomials on the circle in [4].

In the next section we will show that the RH problem for Y'(z;n,t) is solvable (and
therefore the orthogonal polynomials exist and the coefficients x,, are nonzero) for all
n larger than some ng(«, 5) provided 2nt is bounded away from a certain finite set

11



of points (in particular, D, # 0). The number ng(«, 3) is bounded for o and S in a
bounded set.

Our next aim is to express % In D,,(t) in terms of the entries of the RH solution Y.
We prove the following.

Proposition 2.1 Lett > 0 and n € N. Suppose that the RH problem for Y (z;n,t) is
solvable. Then the following differential identity holds:

d Y Y

— 0Dy (t) = —(a+ B)e’ <Y - >22 (€) + (a—pe <Y 7 >22 (e™). (28)

Proof. We will follow the approach of Its, Tracy, and Widom [24]. Let us start with
the expression

Dy (f) = det(I = Ky), (2.9)
where K, is an integral operator acting on L?(C) with kernel

(/)" =11 J()

Kn(z,#) = z—2 271

(2.10)

This fact is easy to verify by considering the matrix expression for K, in the basis {z*},
k= —o00,...,00. We have

Ky
%m D,(f) = %tr In(l — K,) = —tr (I — K,)™" ddt : (2.11)
Since
df atf, a—-pf
— = |- 2.12
dt < z—ete+z—e_te / (2.12)
we have
dK.
n_ M) g2
P R (2.13)
where
@, o =B E/N"-1fE)
K\ (z,2) e B W (2.14)
and
O nx o @B I =11 f()
K/ (z,2) = Ai(z,2) R R— 5 € (2.15)
Here
t nn __
Az, 2y = 9FB € G/Z)" =1 (2.16)

2 —et 2wy oz —2

The reason to single out A; will soon become clear. By a residue calculation, we obtain

(F) ) = ot p)e I B2 T ()" (5))].

21z —et z—2 et 2
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We can now rewrite (2.I5]) as follows:

K (0) = (T = Ko ) + (ot e L ZEE )

Defining the following 2-component vectors

o= (7). =SR2, fo -2 g -2

we can write (2.17) in the final form:
E{D(2,2) = (M(I = Kn))(2,2) + (a + B)e' (e fi(2)G2(2') — fo(2)d(2)) (2.18)
On the other hand, let us define Fj = (I — K,,)~'f;. Then

Fi(z) _ [ Ea(z7)

/ r__ 7 .
» et p 2 — et Fj(z)dz _f](2)7 7 =1,2.

Noting that

f()"4(=")

z—2z

Ky(z,7) =

)

we can write the above equation in the form

2O - [ Koo Z e+ [ Fomae e < fie)

z— 2 2 — et

Applying (I — K,,)~! to both sides, we obtain

2
- 1 )
> mp(eh)Fr(z) = ——Fk),  i=12 (2.19)
k=1
where Fj, = (I — K,)"!f}, and
. . dz .
mj(€e") = Ok — CFj(Z)gk(Z)m, Jk=1,2. (2:20)

Thus we have for the 2-component vector (detm = 1, see [24])

~ 1 1 maoaF1 — myaF:
F(s) — 1V F () — 22k 12£2 ) 991
(2) el (€)F(2) z — et <—m21F1 + mi1F (2.21)

As is shown in ([24], Eq. (2.16) up to a different notation), the matrix m is related to
Y. For |z| > 1,

mi12" +miz  —migz "
Y = . 2.22
()= (e s ) (222)

Using the definition F = (I — K,,)"'f, equations (ZIR), @2I), @22, and the fact
that

t /
trA = (a—i—ﬁ)e—/cz,(& = —n(a—l—ﬁ),

271 2/ —et)
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we easily obtain

tr (1 = Kn) T KY) = (a + B)e! (Yin (e)Y.g(¢) = Yar (€)Y ("), (2.23)

z

where Y/(e!) stands for the derivative of Y (z) w.r.t. z evaluated at z = €.

Let us now compute the contribution of K,(f). First, write Kr(?) in the form

KO —p, @78 (z/2)" 11— f(=) PO A U0 et W RS

" 2 —et  z—2 2 ’ 2 —et z—2  2mi

We then obtain as above for K,(Ll) that

K2, ) = (Aall = K)o ) + 0= g)e o LENE BN B (3

Defining the new vectors

Foy= 49 g = 25 R

z—et’ z—et’
we can write (2.24)) in the form:
KEP(2,2) = (Ao = Kp))(2,2) + (a = B)e (e ™ fa(2)1 () — fi(2)1 (') (2.25)
and obtain as above

=~ N 1 mgg(e_t)Fl (Z) — mlg(e_t)Fg(Z)
F(z) = z—et <—m21(€_t)F1(Z) + m11(€_t)F2(Z)> ' (226)

For |z] < 1, the matrix m is related to Y by the formula preceeding (3.21) in [24]:

o mu2"+mi2 mn
Y(z) = (_mmzn e _m21> . (2.27)

Using the definition F = (I — K,,)"'f, equations (225), Z26), @2.27), and the fact
that tr Ay = 0, we finally obtain

tr (I = 1) T KP) = (@ = B)e™ (Yiu(e™)Yipp(e™") = Yar(e )Y, p(e7)). (2:28)

Expressions (2.23)) and (2.28) imply by (2.I3)) the statement of the Proposition. O

3 Asymptotic analysis of the RH problem for orthogonal
polynomials

In this section, we apply the steepest descent method of Deift and Zhou [14] to the RH
problem for Y. We follow the strategy used in [4] for orthogonal polynomials on the unit
circle with a special weight function, and used in [12] [13] for orthogonal polynomials on
the real line with respect to a more general weight function. The most important new
feature here is the construction of a local parametrix near 1 which involves a Painlevé V
RH problem. We will obtain asymptotics for Y as n — oo, and therefore, asymptotics
of the r.h.s. of (2.8) in terms of Painlevé V functions.

14



0

Figure 2: The contour % = 31 U C' U 35 and the regions €y, ..., 4.

3.1 Normalization of the RH problem
Define

Y(2)z7"3, as |z > 1,
(=) = {Y(z), as |z| < 1, 3.1

with Y given by (27]). Then T satisfies a RH problem normalized at infinity.

RH problem for T
(a) T:C\ C — C?*? is analytic.

(b) T (2) = T (2) (Zon d (_Z,3> . forzec.

(c) T(z)=I+0(1/z2) as z — 00.

The diagonal elements of the jump matrix for T" oscillate rapidly on the unit circle if n
is large. The next transformation turns the oscillatory behavior into exponential decay
on a deformed contour.

3.2 Opening of the lens

Note that one can factorize the jump matrix for 7" as follows,

z

Jr(z) = <0n ‘Z(_Zn)>

- <z‘"f1(z)‘1 (1)> (—f(ozrl ng>> <Z"f(1z)‘1 (1)>' (32)

To make use of this factorization, consider the three counterclockwise oriented closed

15



curves as shown in Figure 2l Let us write

Ji(z) = <z_"f1(z)_1 (1)> ; (3.3)
JN(Z) = (_f((l)—l fE)Z)> ) (3'4)
5 = (gl 1) (35)
and define
T(z), in regions 7 and €y,

S(z) = T(2)J1, in region o, (3.6)
T(2)Jy; ', in region Q3,

with Q1,Q9,Q3 as indicated in Figure Pl Note that f is an analytic function in C\
([0,e7t] U [ef, +00)), and we define X1, ¥ so that the branch cuts are located in the
regions €27 and §24. As we can have ¢t — 0, it is inevitable that ©; and €4 approach 1.
We choose ¥; and Y9 to go through 1 as in Figure 2l The function S(z) satisfies the
following RH problem.
RH problem for S

(a) S:C\ (37 UCUXg) — C?*2 is analytic.

(b) Sy(z) =S_(2)Jx(2), for z € X, k=1,2,
Si(z) = S_(2)Jn(2), for z € C.

(c) S(z) =1+0(1/z2), as z — oo.
Note that the jump matrices J; and Jo tend to the identity matrix on their respective
contours Y1 and Yo as n — 0o except near 1.

We need to construct a parametrix dealing with the jump condition on the unit

circle and a local parametrix near 1.
3.3 Global parametrix away from 1
Ignoring the jumps on ¥; and Y5 and a neighborhood of 1, we consider the following
model problem.
RH problem for N

(a) N:C\ C — C?*2is analytic.

(b) Ny(z) =N_(2)Jn(2), for z € C.

(¢c) N(2) =I1+0(1/z), as z — 00.
This problem is easily solved explicitly:

0 1
D(z)7s ( . 0) ,  for |z| <1,

D(z)7, for |z| > 1,

N(z) = (3.7)

16



where the (Szegd) function D(z) is analytic and nonzero in C\ C, tends to 1 as z — oo,
and satisfies the jump condition Dy (z) = D_(z)f(z) for z € C. It is easy to verify that

5 — et)atBe—im(a+B) oy > Vizk), for |z| < 1,
D(z):{( ) p (2o V") 4 (3.8)

(z — e tH)y"etP =B exp <— St o szk) ,  for |z] > 1.

3.4 Local parametrix near 1

For 0 < t < tg with tg fixed but sufficiently small, we will now construct a parametrix
P satisfying the same jump conditions as S in a neighborhood U of 1 of a sufficiently
small fixed radius and a matching condition with N on the boundary oU.

Assume that ¥(¢) solves the RH problem of Section [L3] and define

x 1 us’
O\ z) = eZUSx_BUS\IJ(% + 3 )G (A x)%og’ei?(a_ﬁ)@, for £Im A > 0 (3.9)
respectively, with
GOnvz) =\ + g)—@*—ﬁ)(x - g)aweke—m(a—ﬁ), x>0, (3.10)

where G is analytic in C\ ((—oco,—%] U[%,+00)). We choose —m < arg(A+ %) < m
and 0 < arg(A — §) < 27. It is straightforward to check that ® = ®(A;x) solves the
following RH problem for z > 0.

RH problem for ¢

mi(25—1) . . . mi(25—1) .
(a) ®:C\Uj_je T RT — C2*2 is analytic, with the rays e~ 1 RT oriented as

shown in Figure Bl

wi(2j—1)
4

(b) @ has continuous boundary values on U?zle R*\ {0}, and they are related

by the jump conditions:

cx)L i i

DL (N)=D_()N) (é G()\,la:) > , as \ € eTRT Ue'T RY, (3.11)
1 0 3mi 5mi

PL(N)=D_(N) <—G()\'x) 1>, asA\€e1 RTUes R, (3.12)

(¢) @ has the following behavior as A — oo:

dN) =T+00\h). (3.13)
(d) @ is bounded near 0.

We will prove the following results.

Proposition 3.1 (i) IfRea > —%, the RH problem for ® is uniquely solvable for all
but possibly a finite number of positive x-values {1, ..., x}, where x; = xj(c, )
and k = k(a, B).

(il) If a > —% (Ima =0) and Re B =0, the RH problem for ® is (uniquely) solvable
for all x > 0.

17



Sy N

Figure 3: The jump contour and jump matrices for ®.

(ili) If Reaw > —3, the asymptotic condition (313) for ® is valid uniformly for x €
(0, +00) provided that x remains bounded away from the set {x1,...,Tx}.

Statements (i) and (ii) follow immediately from Theorem [[.§] (which will be proven in
Section M]). The third statement will follow from our asymptotic analysis of the RH
problem for ® in Section [l

We will now transform the jump matrices for ® into the jump matrices for S near 1.
Note first that the off-diagonal entries of the jump matrices for & have branch points
at £3, and the ones for S at e*t. Let us therefore define a conformal mapping A(z) in
a neighborhood of 1 which maps e~* to -3, el to 5, and 1 to 0:

x
Az) = 5 In(z), zeU. (3.14)

Here we take the branch of the logarithm such that Inz > 0 for z > 1, and the branch
cut is along the negative real axis. We will furthermore need that e*?) = 2" and
therefore set

x = 2nt. (3.15)

Let us choose the contours Y1 and 39 near 1 in such a way that A maps ¥y U 3o
onto the jump contour U;*:le T RT for ®. We look for the parametrix P in the

form
P(z) = E(2)®(\(2);2nt)W(2), (3.16)

where FE is an analytic function in U, and W is given by

(2) = {‘G<A<z>>—EUSz%USﬂz)—E”S% for |2 < 1, (3.17)

G(\(2)) 293259 f(2)3% 0, for |2| > 1,

with o1 = <(1) (1)> Note that the branch points of G cancel the ones for f in U, and

W is analytic in U \ C.

If F is analytic in U, it is easy to check using (B.11)—(B.12]) that P(z) satisfies the
same jump conditions as the matrix S with the jump matrices given in B3)—(B.0).
Since we evaluate ®(\;x) at @ = 2nt, we need to impose the condition that 2nt does
not belong to the set {x1,...,x;} of values at which the RH problem for ® is not
solvable.

18



To fix E(z), let us consider the behavior of P on OU. From (3.14]) one observes that
there exists ¢ > 0 such that for any 0 < t < %

IA(2)| > cn, z € 0U. (3.18)

As n — oo and if 2nt stays bounded away from the set {x1,...,x}, we can thus (by
Proposition B1]) use the asymptotic behavior (3.I3]) for ® to conclude that

P(z) = E(2) (I +0(n™ ")) W(z), as n — 0o, (3.19)

uniformly for 0 < t < ty and z € OU. If ¢y is sufficiently small, we can assume that
et lie inside U and at a distance bounded from below away from OU. Then we obtain
from (B.I7) and (3:10) that (here and in ([8:22)) below, O(1) is a scalar matrix element)

o(1)
o

O

0
, 2zl <1

El) (3.20)

0

(

0
W(z) =n"Po

(() D) s

o(1)

as n — oo uniformly for 0 < ¢ < tp and uniformly for z € U \ C.
Now set

E(z) = N(z)W(z)~ L (3.21)

One verifies directlz, using the jumps for N and W across C, that E is analytic in a
full neighborhood U of 1. Furthermore, by (3.20), (3.7),

as n — oo uniformly for 0 < t < ty and z € 9U.
Using this result and (3.19]), we obtain the following matching condition on z € JU:

P(:)N(2) "' = E(2) (I +0(n™)) E(2)™ = I+ n 7720 (n"")n 7. (3.23)

as n — oo uniformly for 0 < ¢t < ¢y and z € JU. Note once again that the matching
holds true if 2nt remains bounded away from the set {x1,..., 2%}

Since P has the same jumps as S inside U and S(z)P(2)™! = O(In(z — 1)) as z — 1
for ¢ > 0, it follows that the singularity is removable and S(z)P(z)~! is analytic in U.
For later use, we note that

E(et) — n—ﬁaagaaah E(e—t) _ n—ﬁaghagah (3'24)

with g and h given by

. _a=f -1 [eS)
sinh ¢ 2 - 1 1
—mif jto - tk - tk
g= ( , > e e exp ( 5 g Vie™ + 5 ,}_0 Vie > ) (3.25)

k=—o00

. ath -1 00
sinht) 2 , 1 1
_ —mif - —tk - —tk
h= ( , > e exp ( 5 E Vie ™ + 5 kg_o Vie ) . (3.26)

k=—00
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Figure 4: The contour X p.

3.5 Final RH problem
Define

(3.27)

R(z) = nPo3S(2)N(z)"tn=Po  for z€ C\ U,
| nfo3S(2)P(z)'n P98, for z e U.

Using the RH properties of S, N, and P, we obtain the following.

RH problem for R

(a) R is analytic in C\ X, where X is the union of JU and the parts of X1, X9
lying outside U (see Figure []).

(b) Ry(z) = R_(2)Jgr(2) for z € ¥R, where

=
O
Il

nP7 P(2)N(z)"tn=F7, for z € U, (3.28)
nP73 N (2)J(2)N(z) " tn P73, for z € Xy, outside U, (3.29)
and Ji(z), k = 1,2 are the jump matrices (3.3]), (8.3 of S.
(c) As z — 00, R(z) =1+ O(z71).
Using (B.3), (33), and ([3:23)), we observe a crucial fact:

Jr(z) =1+ 0(Mn™1), for z € AU, (3.30)
Jr(z) =1+ 0O(e™ "), for z€ Xp\0U, c>0 (3.31)

as n — oo uniformly in z and uniformly for 0 < ¢ < ¢y as long as 2nt remains bounded
away from the set {x1,...,2x}. Thus the jump matrix Jg tends to the identity matrix
as n — oo. The RH problem for R is therefore a so-called small-norm RH problem,
and by a standard analysis (see, e.g., [I3]) we obtain the following statement.

Proposition 3.2 Let 0 <t < tg. Then

(i) The RH problem for R is solvable for n sufficiently large as long as 2nt remains
bounded away from the set {x1,...,x}.
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(ii) If n — oo,
R(z) =1+ 0(n™"), uniformly for z € C\ X (3.32)

and for 0 < t < tg such that 2nt remains bounded away from the set {x1,...,z}.

3.6 Asymptotics for % In D,

Reversing the transformations S — R, T +— S, and Y — T by @I), (30), and
(3:27)), we obtain the asymptotics for Y (z) under the conditions of Proposition In
particular, we obtain

Y(z) = n_503(1 + O(n_l))nB°3P(z)z"U3, for z near €', (3.33)
Y (2) = n P (I + O(n1))n 73 P(2), for z near e, (3.34)
as n — oo, uniformly for 0 < t < tg if 2nt remains bounded away from {z1,...,x}.

Using the definitions (3.7)), (3.10), and (3:24]), we find for P in the above formulas:

P(2) = E(2)®(2)W(2) = D(2) W (2) 1 ®(2)W (2), for z near €', (3.35)

0 1

P(2) = E(2)0(:)W (2) = D(2)" <—1 0

> W(2)"'®(2)W(z), for z near e~*.
(3.36)

We will now substitute the asymptotics we obtained for Y into the differential
identity (28] for In D,,(t). First, consider the case of z close to e!. By ([8.33]), we obtain

yly! = %+z_"U3P_1PZ'z""3+z_""3P_1(z)n_503 (I+O(n~H)) O™, nP72 P(2) 2",

(3.37)
Using (3.35) and ([B.17), we further obtain
Al A, D,
1p/ 2 1 1&/ 1 1 Tz “z
e > A AT W(I)O'g(I)W<A+D> (3.38)
where we defined A(z) by the formula
W(z) = A(2)%% 0.
Expressions (3.17)) and (B.8)) give
A, w_at+B , a=pf (1 ! Lo iy,
7(6)_ ¢ —I—Te _+sinht +§Vz(e ) (3.39)
D—;(et) = Z kVielk—1t (3.40)
D 2s1nht 4

Therefore, we finally have for the 22 matrix element of P! P/ at the point e':

a+pf a-p(1 e d 1!
1 1 <_+smht> —eV() e' (@710 )11 (e")~

' (P Pl)ga(e) =

a+pf a—p (1 e? / kt 1 t
( P () T B ) 0

k=—o00
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(3.41)
Now using the definition of W (z) it is easy to conclude that
nP7P(et) = &(t)n3,
where ®(t) is bounded in n as long as (%) is bounded. Thus, we obtained the asymp-
totic expression

e (Y1 )ga(eh) = —n + €' (P P)aa(e!) + (@—1(t)0(1/n)<i>(t))22 (3.42)

uniformly for 0 < t < ty as long as 2nt remains bounded away from the set {z1,...,x},
with the second term on the r.h.s. given by (B.41]).
Similar calculations at et give

YT (e™) = (P PDm(e™) + (9T 0O/MEW) L (343)
with
—t;p—1pt _t__a—ﬂ_a+6 1 e’ | —tig—1a/ —t\
e (P7'Pl)y(e™) = 1 1 <t+sinht +5e Vi(e™" ) +e (P P))aa(e™)
a=F a+p (1 et | — - —kt -1 —t
- — - = kV; ) ) .
< 4 + 4 <t sinht> 26 Vile )+kzz:1 ke ( 73%)22(e7)
(3.44)
Collecting (3:42]) and (3.43)) together, substituting into (2.8]), and noting that
n
o ="
z P A
gives
Proposition 3.3 Let
o+ _ o — -
w(e) = TP @ B0 (@/2) + 5L @ B2, (3.45)
Then
d a2+ 32 o2-p% /1 et
g Pn=(atfn - ———-— <Z+ sinht>

et ; BetVZ’(et) + 2P ; 5e_t‘/;(e_t) + 2nw(x)

a+5{a+6+a—ﬂ<1 et

_|_

2 2\t

t Sinht> + Z k(Vkekt + V_ke_kt)} (<I>_10'3<I>)11(et)
k=1

a-8 a—5+a+ﬂ 1 et
2 2 t sinht

) + Z k(Vke_kt + V_kekt)} (@_103@)22(6_t)
k=1
+0(1/n)®(2),
(3.46)
where the error term is uniform for 0 < t < ty as long as 2nt remains bounded away

from the set {x1,... 1}, and ®(x) depends on ®(x/2), ®(—x/2), o, B only and is
bounded when these parameters are in a compact set.

In the next section, we will analyze the Painlevé functions ®(\). Namely, we will
obtain their behavior at x = 0 and oo which will be used in the last section to prove
Theorems [[T] and [[4]
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4 Model RH problem near z = 1 and the fifth Painlevé
equation

Recall the RH problem for ¥ stated in the introduction on the contour I' given in
Figure [[l for x > 0 and Rea > —%. In this section, we will analyze the W-RH problem
asymptotically for x near zero and infinity and prove Theorem [[.8 and Proposition [3.11
Moreover, we will give an explicit formula for w (defined by ([343])) in terms of the
Painlevé V function v.

For simplicity, we will omit the dependence of ¥ on «, 8, and x in our notation when
convenient. The behavior of ¥ near 0 and 1 can also be characterized in a different
way from conditions (L.39)), (L40]). The following statement holds.

Proposition 4.1 Let ¥ = ¥((;z, o, B) satisfy the conditions (a), (b), (d0), and (d1)
of the RH problem for W. Set

Wo(C) = W(Q)(¢ — 1) "3 o8¢0, (4.1)

Then the function Wy is analytic near 0 and near 1. The branch cuts for C‘anB"S and
(¢ — 1)%%3 are chosen here along [0,400) and [1,+00), respectively.

Proof. The fact that Vg is analytic near 0 and 1 can be verified using the jump

conditions for ¥ for ({ — 1)0%%3 and ¢ —*3%03 The isolated singularities at 0 and 1
are removable because of the conditions (d0) and (d1). O

Recall the function ® defined in terms of ¥ in (3.9)-(BI0). It satisfies the RH
problem given in Section [3.4]

We will now perform an asymptotic analysis of the RH problem for ® as x — +o00
and as x N\, 0.
4.1 Asymptotics for ¢ as x — +0o0

Consider Figure Bl and define
(G ) = D(a(; ), (4.2)
for ¢ outside of the two triangular regions A and B. In these regions set

B(gi) = wlacia) (, “UGTT),

in region B,

&)(C;x) = ®(x(; ) <G(a;1C; 2) (1)> , in region A.

Now @ is defined in such a way that it has its jumps only on the solid lines in Figure
Bl We have

RH problem for ®
(a) ®:C\ (I UTy) — C2*2 is analytic.
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Figure 5: The jump contour for 3.

(b) ® has continuous boundary values on [, UT, related by the conditions:
~ =~ 1 G(x¢ )™t ~
() =2-(¢) <O ( <1 ) > ; for ¢ € Ty, (4.3)

64<w=5_@>(_Gézmﬁ 2), as ¢ e Ty, (4.4

(c) ® has the following behavior as ( — oo,
®(C)=T+0(™). (4.5)

The jump matrices for d are exponentially close to I as * — 400 because of the
exponential factor in the definition of G (see (3.10))). Indeed, let us denote Gz (¢) the

jump matrix for the function ®(z), i.e.
1 G(zCa)™! =~
Gg(¢) = <0 (:Cglx) > ¢ely,

and

630 = (Lagaeny 1) CET

Then, the following estimates hold:
1T = Gill ey 1T = Gall @y < Ce 3079, 0<e<1, €>0, (4.6)

where

f = fl @] fg,
and we assume that the vertical parts of the contours fl and fg are given by the
equations Re( = 1/2 —¢/2 and Re( = —1/2 + €¢/2, respectively. Estimates (£.06) imply
that the RH problem for ® is a small-norm RH problem for large x and is therefore
solvable in a standard way (see e.g., [13]) for x sufficiently large. Moreover, the solution
® admits the integral representation,

& _ 1 / (! dC/

#(0) = T+ 5 [ C)(Ga) = 1) 5=, (47)
with the function p({) which is Lo - close to the identity, namely,

1= pll gy < Cem2079. (48)

24



The large x solvability of the &)fproblem means that the RH problems for ® and ¥
are solvable for x sufficiently large as well. In addition, we have that

B = 1O T, wa 1o 4

This estimate holds uniformly for ¢ off the jump contour and this implies, in particular,
that the following asymptotics hold as x — +oc:

ci(i%;a;) = @(ig;x) =T+ 0(e2(179), (4.10)
@3(1%;3;) = O(e~21-9), (4.11)

Furthermore, (£9) implies that
d(Nz)=T+00\, as A — oo, uniformly for z > C, C' > 0. (4.12)

The integral representation (£7) in conjunction with the estimate (L) allows to
evaluate the asymptotics for the Painlevé function v(z) defined in (L4I). Let C be
the first coefficient in the large ¢ expansion of the function @,

~ o i

<I>(§)—I—|—?+(9(C ), ¢ — oc. (4.13)
(Note that this expansion is uniform for z > C, C' > 0.) Recalling the relation between
the functions ®, ®, and ¥, we obtain the following expression of the first coefficient C
of the series (I.38)) in terms of the coefficient C1,

a+p
2

Together with (L4T), this means that

Ci = o3+ e~ 1730030 P38 (4.14)

v(z) = —C1 11 — 2C112C1 21 (4.15)
On the other hand, from (4.7) we obtain

_ 1
Cr =5 [.0(Ga(0) ~ 1) dc, (4.16)
which leads to the estimate:
_ 1 1
Ci = —5m [ (G5O =1)dc— 5 [ (st) 1) (G50~ 1) ac
1 i 1
= f<G&>(C)—I> dC+0(e17), 0<e<s. (4.17)

The estimate (£.I7) implies the following asymptotic representations for the entries of
the matrix Cy as x — +o0:

. 1
Ciiz2 = 5 | G(:EC;x)_l dC+(9(e_x(1_e))
T T
= _x—2ﬁe—§ﬂ¢(1 —a—f3,2—-28;z) + O(e179)
T(a+B)

 itap _% e—27riﬁ l
= gt Fe ot s <1+O<x>>, (4.18)
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Figure 6: The jump contour and jump matrices for W.

- 1

Cra = 5— - G(z¢; )™t d¢ + O(e7179)
= xzﬁe_%ﬂw(l —a+ 6,24 28;z) + O(e~*(179)
o 5"
= $—1+a+ﬁe—§% <1 +0 (é)) : (4.19)
and
Ci11 = —Cia = 0(e 2079), (4.20)

where 1(a, ¢; x) denotes the confluent hypergeometric function. The last estimate can
be improved with the help of the differential identity (4£.96]) which will be proven in
Section 4.3l Indeed, this identity implies that

—C111 = C1,12C1 21,
dzx

and hence

Cri = :E_2+2°‘e_xr(a — 5)}(0[ ey <1 +0 <%>> : (4.21)

Substituting the estimates ([4I8]), (A19]), and ([@2I]) into the formula (£I5]), we arrive
at the following asymptotic equation for the Painlevé function v(x):

v(z) = :E_1+2°‘e_xr(a Y (1 +0 (%)) : (4.22)

4.2 Asymptotics for ¥ and ¢ as = \ 0

Write ¥y,..., Uy for the analytic continuation of ¥ from the indicated in Figure [
sectors I, ..., V to C\ [0,400), respectively, and consider the function

\III(% +1; 1), for A in region I,

\IIH(% +1;z), for X in region IT’,

\TJ(A; z) 1= e3P x \I/IH(% +1;x), for X in region IIT, (4.23)
Tpy(2 +1;2), for A in region IV’

\IIV(% +1;z), for X in region V’,
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where the (modified) regions I, ..., V” are indicated in Figure[@ so that T = (I\’()\; x,a, )

has jumps on a contour which is partially shifted compared to the one for ¥(A/z + 1).

In particular, the intersection of the contour lines is now at A = 0 instead of A = —x /2.
From the RH problem for W, one easily derives the RH conditions for W.

RH problem for v
(a) U:C\ (ei%R URT U [—x,O]) — C?*? is analytic.

(b) ¥ has continuous boundary values on eFTRURY U [—2,0] \ {—x,0}, and they
are related as follows (with the orientation of the contour as in Figure [6]),

~ ~ T‘-Z(a_ﬁ) in
U, (\)=T_(\) (é ¢ ] > , as A € e T RT, (4.24)
T\ =T_()) (_e_fé(a_ﬁ) ?) : as A € e T RY, (4.25)
T =T (\) (em’(i—m g) , as A€ eFRY. (4.26)
~ ~ _e—mi(a—p) in
T\ =T_()) (é € ) > , as \ € e T RY, (4.27)
T (N) = U_(\)emibos, as A € RT, (4.28)
T, (\) = U_(N)e mHePos, as A € (—,0). (4.29)
(¢) As A — oo,
T(N) = (I +0O\h)) A Fosemzros (4.30)
(d0) As A = —x,
a— a—p
= Atz AT
T\ =0 o as |- 4.31
W <|)\—|—x|TB A+ x| (4.31)

(d1) As A — 0 in sectors I’ and V’,

a+8 atpB
& A7 A2
A =0 o o . 4.32

As A — 0 in the other sectors, the behaviour of T is obtained by applying the
la+8]

jump conditions to @3Z). ¥(A\) = O\~ 2 ) always holds.

For small values of x, we will now construct a global parametrix and a local parametrix
near 0 for ¥ and match them on the boundary of an e-neighborhood of A = 0. These
constructions will lead to the uniform asymptotics for ¥ and ¥ as z 0.

4.2.1 Construction of the global parametrix

Consider a fixed e-neighborhood U, of A = 0 containing, in particular, _the [—x,0] part
of the contour. Outside of this neighborhood, we expect to model ¥ by the global
parametrix M = M (\; «, ) independent of x and solving the following RH problem.
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RH problem for M

(a) M :C\ <ei%RUR+) — C?*? is analytic,

(b) M has continuous boundary values on T RURY \ {0} related by the conditions

1 67”:( _B) i
Mi(\) = M_()\) <0 1 > , as A € e1 RT, (4.33)
My(A\) = M_(\) 1 0 NeERY,  (4.34)
+ = — _e_ﬂi(a_ﬁ) 1 5 as e s .
ey =m0 Y as A € e T R (4.35)
+ - - eﬂi(a—ﬁ) 1) ) .
— _7‘—7:( —ﬁ) i
M.(\) = M_(\) <é ¢ . ) , as \ € e T RY, (4.36)
M (X\) = M_(\)e*™i8os as A € RT. (4.37)
(¢c) We have
M) = (I+O0ON ) A P73 a5 X — oo, (4.38)

We can solve this RH problem explicitly in terms of the confluent hypergeometric
function. Inspired by the constructions of [23| [I1], we define

H()\) — e im20te) 0 e_%ram )\a¢(a + 6,1+ 20, )\)eiw(26+a)
- 0 ¢im(B+20) ATP(1 = o+ B,1 — 2, A)eim(F-30) Lratd)
@ _ —im in(B4a) F(1+a—p) imo
A ¢(1+Oé B,1+2a,e )\)e T(a+D) e’ 036_)\03/2, atB#-1,-2,...,
A" (—a — B,1 = 2a,e "N )e
(4.39)

where ¢ (a, b, x) is the confluent hypergeometric function, and I'(z) is Euler’s I'-function.
Furthermore let

1 _eﬂ—i( —ﬁ)
M(X) = Mi(X) := H(X) <0 1 >, for 0 < arg\ < 7,
M(X) = Ma(A) == H(N), for 7 <arg\ < %Tﬂv
1 0
M(X) = M3(\) :== H()N) <—e_”(°‘_5) 1> , for ?ﬂf <arg\ < %’r,
M(A) = My(\) = H(A ! 0 for 5% < arg ) < I
(A) OVE (A) disinm(a—B) 1) or of <arg\ < F,

M) = Ms(\) :== H\)

1 —e_7ri( -B) ; . \ 5
2isin(a — f3) —9je—mi(a=p) sint(a—p)+1)° or - <argaA < am.

Using known properties of the confluent hypergeometric function, one verifies as in [I1]
that M satisfies the prescribed RH conditions.

28



In order to match M later on with the local parametrix near zero that we construct
in the next section, we will now need to rewrite M in the form in which the structure
of its singularity at A\ = 0 becomes more apparent.

Recall the following properties of the confluent hypergeometric function (see, e.g.,

[51):

¢(a7 c, Z) B eiwa e—iﬂ(c—a) i B
T T a)i/)(a, ¢, z)+ W¢(c —a,c,e " 2)e”, (4.40)
Y(a,c,2) =21 "(a —c+ 1,2 — ¢, 2), (4.41)

I'(1- I'(c—1
Boes) = po D pla ) + e e ek L2 as), cd
(4.42)
(10(&7 C, Z) = eZSD(C - a,c, —Z). (443)
where
> a(a (a+n—1)z"

o(a,c; 2) _1+ZC ETEnE c#£0,—1,-2,... (4.44)

is an entire function. Let us focus on the region III’. Assume first that 2« # 0,1, 2, ...
(noninteger 2« combined with our general condition Rea > —1/2). Using the proper-

ties (L40) and (£4T) for simplification of the first column of M3, and (£42]), (£43) for

the second, we easily obtain
Ms(\) = EQ)A*3Gy,  200#0,1,..., axB#-1,-2,..., (4.45)

with the branch of A*® chosen with 0 < arg A\ < 2m. Here

—m(a-i—ﬁ)w ola+p,142a,\)

E()\) = o2 T(1+20) ¥
(A) <_e—m(a B) %jf;g) (1+a+6,142a,))

e piye(—a+ 5,1 - 20,) (4.46)
e'm(eth) F((Za))go(l —a+8,1—-2a,) '

is entire, and G5 is the constant matrix

1 ¢ sinm(a + B)
_ ="\ TH 4.4
Cs <0 1> ’ “ sin 27w (447)
Applying to ([445]) the jump conditions we readily obtain the general formulas
M;(\) = E(A)A*2Gj, j=1,...,5, 200 £0,1,..., axtf#-1,-2
(4.48)

with appropriate constant matrices G;. In particular, G is given by ({#.47)) and

1+ cle—iw(a—ﬁ) _eiﬂ(a—ﬁ)
Gl = < e_iﬂ.(a_ﬁ) 0 . (449)

Consider now the case when 2« is an integer. In this case, the calculations for the
first column of M3 remain the same, whereas for the second column (note that ([42])
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does not hold now) we use the known logarithmic formulas for the ¢-function. We then
obtain

M;(X\) = E(A)\78 <é 7(3)) G, j=1,....,5, (4.50)
(_1)2a+1 )
y(A) = — sin(a + ) In(Ae™ ™), if 2a=0,1,..., (4.51)

where E (M) is analytic at zero, and éj are constant matrices. In particular, 613 =1

4.2.2 Construction of the local parametrix near 0

We construct a local parametrix P in U, in such a way that it has the singularities and
jumps of ¥ and matches with M to the main order in z on the boundary. We have
to consider the cases 2a ¢ Z and 2a € Z separately because of the different behavior
of M at OU.. As examination of the final formulas show (see (£61), (4.64), (.71,
and ([@72]) below), our constructions in this section will be valid for all «, 5 such that
a+p # —1,—-2,... This is exactly the restriction on M in the previous section. Some
preliminary expressions, however, are valid under stronger conditions oo + § ¢ Z (cf.
(£56])). We do not mention these conditions as they disappear in the final formulas,
namely: the singularities in «, 8 of J and J defined below cancel with the zeros of o,
Co.

We first deal with the case when 2« # 0,1,2,.... Since we have a problem with
2 singular points with power-law behaviour at —z and 0 and require a power-law be-
haviour at the boundary 9U. (see (£48])) we expect from the general principles (e.g.,
[16]) a parametrix in terms of the hypergeometric function. Indeed such a parametrix
was found by Jimbo [25] in the generic case of Painlevé V equation. Instead of trying
to specialize it to our situation, we provide a direct construction below. For 2a ¢ Z |
define P = P(\;x,, 8) in U, by the expressions

P(\) = Pj(N), with j =1 for A in sector I’, j = 2 in sector II’, and so on, (4.52)
where

with the argument of the roots between 0 and 27. Here E is given by ([@.48), G are as

in ([@18),

| 1zl +a+ BI(1+a—p)
Iz, 0,0) = —— (2 +2a)

F(1,14+a+p5,2+2a, —z/)\), (4.54)

_ 2mia sinm(a+ B)sinmw(a — B)
sin 2ma

Cy) =

, (4.55)

and F'(a,b,c,z) is the hypergeometric function of z with parameters a, b, c¢. For ¢ #
0,—1,—2,..., this function is represented by the standard series

ala+1) - (a+n—1bb+1)--(b+n—1)2z"
Flahe ) =14y At n e e 0

)

n=1
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converging in the disk |z| < r < 1 of any radius r < 1, and is extended to the analytic
function in the plane with a cut [1,+00). Therefore, the function F(a,b,c, —z/)\), in
particular the one in ([€.54]), is analytic in A-plane outside [—x, 0]. We will now find the
jump of J(X) on [—z,0] and the structure of its singularities at —z and 0. First, using
the transformation of the hypergeometric functions from the one with the argument z
to those with the argument 1/z, we can write:

F(l,14+a+ 8,24 2a,—z/\) =
™ T(2 + 20) A\ Tets AN
“sinm(a+B)T(1+a+BT(1+a—p) <E> ( +E> (4.56)

1+20zi
a+p x

F(1,-2a,1 —a— 3,—\/x).

Since for A € (—z,0) the hypergeometric function of the argument —\/x is analytic,
we easily obtain from (£54) and (4.50]) that

Jr(N) = J_(N) + 20\ PN+ z27P, Ne(—=z,0). (4.57)

By (4:48]) we can write

P(\) = E(\) <(1) CO‘T”) (A +2) 2 oA 2B BO)TIM (). (4.58)

Since the product of the factors to the left of M is analytic in C\ [—z, 0], the expression
(45]) implies directly that P satisfies the jump conditions for M, see (E33)—Z37),
except on (—z,0) where M is analytic but P is not. For A € (—z,0), it is convenient

to use (@53, (£4T), and (A57) to verify that
PL(\) = P_(\)e mie=Bas,

This is only true if ¢y is given by ([@53). We have thus constructed P in such a way
that it has exactly the jump conditions for V.

From the fact that P and ¥ have the same jumps, it follows that UPlis analytic in

U, except possibly at the points —z and 0. Let us investigate the behavior of U P! near
a+p

these points in some detail. Recall that by Proposition 1] ¥ (¢)¢ _%B‘R(C —1) 2 7 is
analytic at 0 and 1, which implies by (£.23]) that \T/o()\) = \T/()\)()\ + a;)‘anB"?’)\aTW”?’
is analytic at —z and 0. By (&353]), we have

a—p

)P = ToN) (A +2) "2 A G (A )2 a2

x (é _CO‘](Aix’a’ﬁ)> E\)"L (4.59)

Consider first A close to 0. Substituting ([50) into ([A54), we obtain the following

representation

X+ 2)* P, T(a+ BT(1+a - )

JNz,a,8) = sinm(a + B) 7 (1 + 2a)

F(1,—-2a,1—a—pf,—\/x).
(4.60)
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Therefore,

oI, 8) =~ ST D)y 3 ot 4 (),
sinm(a— B)T(14+ a— B)I'(—2«)

_ 20 2ma
Fy(\) = —x*%e - T —a—75)

F(1,-2a,1 —a—B,—\/z).
(4.61)

Since Fy(A) is analytic close to A = 0, this representation gives an explicit expression for
the singularity of J(A) at 0. Substituting (4.61]) into (4£.59) we see that the singularity
cancels, and W(A)P(\)~! is analytic at A = 0.

In order to analyze the singularity of J at A = —x, apply first the transformation of
the hypergeometric function between arguments z and 1— z to (£56). We then obtain:

Fl,14+a+ 8,24 2a,—z/\) =

e~ 2mie I['(2 +2a) Tra+h 1 AN\
sinm(a—B)T(1+a+ BTl +a—p) <E> < + E) (4.62)
1420

g (1, 20,1 —a+ 6,1+ N x),

and therefore by ({.54]),

e 2miaNetB(\ 4 g)o—h
sinm(a — f3)
a0 = AT +a+ )

(1 + 2a)

J()‘7$7 «, B) ==

(4.63)
F(1,-2a,1 —a+ 3,14 M x).

Using (4.55)), we obtain

SN ¥ B) ot (3 4 2)2f 1 By (),
sin 27 o

sinm(a+ B) (1 + a+ B)I'(—2a)

COJ()‘;‘Tu au/B) =

Fi(\) = g?@e?mia F(1, 20,1 —a+ §,1+ Xx).

s I'l—a+p)
(4.64)
This representation explicitly displays the singularity at —z because F1(\) is analytic
near A = —z. In the same way as for A = 0, we now obtain that W(\)P(\)~! is analytic
at A = —x as well.

For )\ at a fixed distance away of the origin, say for A € 9U, it follows from (Z58))
that

PO\ o)MO\) ™ =T+ 0(z) + Oz 29), as z \ 0. (4.65)

We now consider the case 2a € Z. We again set
P(\) = Pj(N), with j =1 for X in sector I, j = 2 in sector II’, and so on, (4.66)

but now with

PV = E(V) <1 c2J W) (A + o) 7208\ F 00 <1 ’Y(A)> G (4.67)



where

co = 2L sinm(a + B) sinm(a — ), (4.68)
T
~ 1/0 0
J()\,%,CM,,@) - 5 <£ + %) J()\,.Z',Oé,ﬂ), (469)
with J(\) given by (£54).
Note that
JeA) = -\ + 2PN+ 2P|,  Ae(—z,0). (4.70)

A similar derivation to the one above shows that P again satisfies the same jump
conditions as the ones for W. To analyze the structure of the singularities of P()) at 0
and at —x, we need, as above, to find suitable expressions for cy J (M) at these points.
Applying the differential operator 1(0/0a + 9/93) to [&G) (it is convenient to write
Ne+B = gim(atB) (g=im \)a+B first) and noting that

sinm(a — f)

_ (_1\2a+1
smﬂ(a—i—ﬂ)_( 1) +7 2046Z, B¢Z7

we obtain

cJ\ @, o, 8) = [(—1)2a+1()\6_m)°‘+5 - %Sin (o — B)NHP ln()\e_i”)] A+ 2)2 P 4+ Fy(N)

~ o 0 0 JJ(a+ 81+ a—p5)
By = _52 <£ * %) [$2 (1 + 2a)

F(1,—2a,1 —a—p, —)\/:17)} .
(4.71)

As above, this expression can be used to show that \Tl()\)P()\)_1 has no singularity at
A = 0. To analyze a neighborhood of A = —z, note that the first term on the r.h.s. of
([463) can be written as

6_7”;(05_5)

= (pimyatB a—pB
snr(a—5) (e A4 2)*P,

and application of the operator £(0/0a + 8/9B) to the fraction in the above formula
gives zero by antisymmetry in o and §. We finally obtain from (4.63))

aTva,0,8) = Tsina(a+ B N+ 2 (e ™) + Fi ()
B =2 < o, 9 > [th(a — AT +a+p)

F(1,—-20,1 —a+ 5,1+ \/x)|,

2 \ da + a8 (1 + 2a)
(4.72)
which can be used to see that W(A\)P(A)~! has no singularity at A\ = —x.
It is easy to see that
P2) M\ =T+ 0O(znx), for A € U, (4.73)

as x \ 0.
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Note that using an integral representation for the hypergeometric function, we can,

if Re(a £ 8) > —1, represent J(\) and J(A) in the following form, which makes the
jump conditions ([4.57) and ([@70) obvious:

I A e a1 ~ 1O ez Plee P g
TN = %/_m £~ A % JN= %/_w D) %, (4.74)

Re(a £ 3) > —1.

Now define

R\ =< ~ (4.75)

TA)MA)™L, for e C\ U,
YN P(N)L, for A e U..

This function satisfies the following problem.

RH problem for R
(a) R is analytic in C\ OU..
(b) The jump condition for R is

Ri(A)=R_(N)(I+e(N), for A € 9U, with e(A) = o(1) as x 0. (4.76)

(c) RA)=T+0O(\1)as A — co.

For x sufficiently small, this is a small-norm RH problem, and it follows that the RH
problem for R is solvable, say for 0 < & < §. From the invertible transformations
U U Rand U ®, it follows that the RH problems for ¥ and & are solvable as
well for 0 < z < §. We also have R(\) = I + o(1) uniformly for A € C\ 9U as z 0.
In particular this holds at infinity, which means that

1
RN =I1+0 (X) , as A — 00, (4.77)
uniformly for small z. Tracing back the transformations ¥ U R and ¥ — d, we
can conclude that
dNz)=T+0\), as A — oo, uniformly for 0 < z < ¢. (4.78)
Moreover, using (4.61]) we obtain for 2a ¢ Z

—1 2Fy(0)

@(g;x)a;),@(g;x)_l _ e—mUsMR(O)E(O) < 0 1

>E(0)‘1R(O)_lem”3/4, (4.79)

where Fy()) is defined in (L.61]). Similarly,

x r
(I)(—E;x)O'gq)(—E;x) 1=

1 —2F (—2) (4.80)

e_x"3/4R(—m)E(—a:) (0 1

> E(—a:)_lR(—a:)_lem3/4,
where Fj()\) is defined in (4.64]).
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Therefore, we have

@(ig;:z:)crg(l)(:tg; z)"t = 0(1) + O(z*%), N\ 0, 2a ¢ Z. (4.81)

Similarly, by (4.67), (A7), (£72),

q;(ig;x)ggq)(ig; )7t = 0(1)+0(z**)+0(z** Inz), x N\ 0, 200 € Z. (4.82)

We will now estimate w(z) given by ([B45]) as N\, 0. First, using the connection
(39) between ® and ¥, we obtain

—1) —
(@71®)) 5 = (1Y) — ( 2) (Aafx% — AO; 952 + 1) . j=1,2. (4.83)

Expressing U0/, = \Tf_lcl\'&, and using (475]), and the formulas for P()\), we obtain
after straightforward calculations that

@) = 2@ b row),  a=2"0
dy — a—BTAl+a+pT(1+a-p8) I'(—2a) | - (4.84)
1+2aT(1—a+ B (1 —a-—pB)T(1+2a)?
Similarly,
(<I>_1<I>/>\)22(—33/2) = axﬁ + (gl + d~2l‘2a)(1 +O(2)), (?1 _ _042—1(;5’
dy = a+B8T1l+a+B8)T14+a—-p) T'(—2a) % ¢ . (4.85)

" 1+2aT(1—a+ A1 —a—B)T(1+2a)2
Substituting these expressions into (3.45]), we obtain as x \ 0:
2 2 2 _ 32
a —_— —_—
B~ o =P
T 2c

x{l— (1 +a+BT(1+a—F) T(1-2) 1
Tl -—a+Ar(l-a-B)T(+20)21+2a

w(x) =

} 1+0(z), 20a¢c7Z.
(4.86)

Similarly, we verify using (.67, (@11, (E12) that as = \, 0,

a2_52

. +O(1) + O(z**) + O(z** In ), 200 € Z. (4.87)

w(z) =

4.3 Differential system for ¥

So far we know that there exist §, M > 0 such that the RH problems for ¥ and & are
solvable for x > M and for 0 < x < . We will derive differential equations for ¥ with
respect to x and {. This will lead to the Painlevé V equation and will help us to find
an identity for the function w given by (3.45]) in terms of v. Here we follow similar lines
as in [I6] Section 5.4].

From the RH conditions for V¥, it follows that, for any x for which the RH problem
is solvable, the (matrix) function A((;z) = ¥¢(¢;2)P~1(¢; x) is a rational function in ¢
with simple poles at 0 and 1. Indeed, A is meromorphic because ¥ has constant jump
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matrices, A is bounded at infinity because of (L.38]), and has simple poles at 0 and 1
because of ([I). Similarly, B((;x) = ¥, (¢;2)¥~1(¢;2) is a polynomial of degree 1 in
(. It follows that W satisfies a linear differential system of the form
A A
Ve(Gi2) = |Aso(z) + # + C%(ﬁ) U(¢ ), (4.88)
Vo (Gi @) = [Bi(x)¢ + Bo()] ¥(¢; 2). (4.89)
Substituting the large (-expansion (L.38)) for ¥ into (4.88]) and (4.89), we can express

the coefficient matrices Ao, Ag, A1, Bp, and B; explicitly in terms of the entries of C;
and Cy:

x

Ao = =503, (4.90)
= (g T ) gy
A= <—2ﬁt :qx; —frat:tq —t 2 +;i ;:;grq - r> : (4.92)
B = _%U?” (4.93)
Bo = (—Ot 6) ’ (4.94)
where ¢ = q(z), r = r(2), t = t(z), h = h(z), and j = j(z) are given by
=i )@= ") (4.95)

(note that the trace of C7 must be zero since the determinant of ¥ is equal to 1).
Equating the O(1/¢)-terms in ¥, = (B1( + By)V gives the identities

¢ (x) = r(z)t(z), (4.96)
h(z) = —r'(x) + r(z)q(x), (4.97)
j(x) =t () + t(z)q(x). (4.98)

Furthermore, equating the mixed derivatives W, = W, leads to the compatibility
condition

Ay — Be+ A, Bl =0, [A,B] = AB — BA. (4.99)
Let us follow [18| [16] and write

a+pB

() = —; q(x) — xq'(z) = 5 — (@) —ar(2)t(z), (4.100)
_ v(z)

y(z) = (97— Di(r) — 2t(x)’ (4.101)

u(z) =1+ ot (4.102)

(28 + 1 —2)t(x) + xt/(z)

Using Proposition[£.IJone shows as in [16] that det Ag = — (a_f ” and det A =— (Mf 2
It then follows that the matrices Ag, A1, and By can be written in the form (the elements
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(11), (22), and (21) of Ay and A; are easy to verify directly, and (12) follows from the
expression for the determinant):

a8

Ay = (‘”_*i z wlv—ath )> , (4.103)

uy 2

_otB i — o —
A = (” Y 2 y_(z +‘;#ﬁ)> , (4.104)

y
1 0 —ylv—a—-F—ulv—a+p)]

By =~ <%[v ~ o ; ) . (4.105)

Writing the compatibility condition (4.99)) in terms of the functions u, v, y, one verifies
that u, v, and y solve the system of ODEs

zuy = zu — 20(u — 1)? 4+ (u— D[(a — Blu — § — o, (4.106)
vy = wolv — a + f] —%(v—ﬁ—a), (4.107)
xym:y{—2v+a+ﬁ—|—u[v—a+ﬁ]—1—%—:17}, (4.108)

which is part of the content of Theorem [ (iii). Eliminating v from the first two
equations, one shows that u solves the Painlevé V equation (L.22)-(L23]).
Define

a+p
2

It follows from (4I00]) that

o(x) =xq(x) — x. (4.109)

— (4.110)
and therefore, by (4.107)),

—zo” =uwv(v —a+ B) — %(U—B—a). (4.111)
Moreover, in view of (£96]), we have that

o —x0’ = —x¢ = —2®rt = 2*(Bo)12(Bo)1.

This equation can be rewritten with the help of (£I05]) as

O'—l‘O'/:—<’U—Oé—ﬁ—u(’U—Oé—|—ﬁ)) (v—%)
:uv(v—a+5)+§(v—6—a)—2v2+2av. (4.112)

Using (.110), (@I11)), and [@I12]), we can check directly that the function o(z) satisfies
the o-form of the fifth Painlevé equation (L.21]).

The system (4.88])-(.89) is the Lax pair associated with Painlevé V. Since the RH
problem for ¥((;z,a, 3) is solvable for 0 < x < ¢ and for > M, the Lax matrices
Ao(z;a, B), A1(x; a, ), and By(z; a, ) exist for those values of z. However, the system
(4.106)-(4.108]) has solutions which are meromorphic in C\ {0} with a cut from zero to
infinity, which implies that Ay, A1, and By exist for all but (possibly) a finite number
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of positive z-values. Using appropriately normalized solutions to (4.88)-(4.89]), the RH
solution W can also be constructed for all but possibly a finite number of positive x-
values [16]. This proves Theorem[L.8] (i) and the equivalent statement for ®, Proposition
B1] (i). Furthermore, the differentiability of ¥ with respect to z, see (4.89]), implies
that the asymptotic condition (L3§]), and thus also (4.38]), holds uniformly as long as
6 < x < M if x remains bounded away from the set of z-values for which the RH
problem is not solvable. Together with (4.I2]) and (478, this proves Proposition [31]

(ii).

Remark 4.2 The functions u, v, y appearing in (£.103)—(£I05]) are particular solutions
to the system (A.I06)—-(4.I08]). Other solutions can be obtained by considering RH
problems for ¥ with modified jump matrices and modified behavior near 0 and 1,
corresponding to different monodromy data, see [2].

Remark 4.3 The RH problem for ¥ is not the standard RH problem related to the
fifth Painlevé equation. In [16] (18], a RH problem was posed on a contour Uy UU; UT,
where Uy and U, are small circles surrounding 0, and 1, and where I' = R \ (Tp U T).
The equivalence of a particular case of this RH problem with ours can be verified
directly using Proposition LIl In order to avoid confusion with the notations in [16],
we note that the system (4.106])-(.I08]) is written with parameters 6, 61, and 0 in
[16], which in our setting are given by

bo=—-B—-a,  bh=a—-08 =208 (4.113)

Proposition 4.4 Set

a(Gx) = (U(¢Ga)os ¥ (¢ a))y, - (4.114)
Then the identities
a—pf a—f
5 a(0;z) = Ag 11 = —v(z) + 5 (4.115)
@ _; ﬁa(l;x) = —A1711 = —U(.Z') + a —; 5, (4.116)

hold, with v defined as before by (1.71)).

Proof. Substituting ¥ expressed from (4.1]) into the differential equation

_ Ao Ay
VUt =Ap +
< =TT
and comparing the residue of the left- and right-hand side at 0 leads to an expression
for U(¢)o3¥(¢)~! as ¢ — 0, in terms of Ag. By ([@I0OJ), this gives the first identity.
Comparing the residues at 1 gives the second identity. a

Proposition 4.5 Let w be defined by (3-47). Then

v(z) = —(zw(2)), (4.117)

o(x) = zw(x) (4.118)
+oo

o(z) = v(§)d¢. (4.119)

T

38



Proof. It follows from Proposition E.1] that ¥ can be written in the form

a—p a+p

Y(Q)=EQ)C 7, W) =FOE-1)" =%, (4.120)
with F analytic near 0 and F' analytic near 1. Let us write

E(C) = Eo(I + Er¢ + 0(¢%), as ¢ — 0, (4.121)

F(¢) = FR(I+ Fi(¢—1)+0((¢ - 1)%), as ¢ — 1. (4.122)

Substituting (£.120) and (£I121)-(4.122) into (4.89), we obtain the identities

E{, = BoEy, E}, = E;' By Ey,
Fé@ = B(]Fo, Fll,:c — F()_lBlFO,

which imply by Proposition 4.4} in particular, that

_ _ 1 1
B} 95(x) = (Ey ' BiEg)22 = (EoB1Ey )22 = 5l0; z), Fiqy(z) = —5a(li@).

(4.123)

On the other hand recalling equation (£83]), we obtain

1, T 1 a+p8 1
O (=5 ) (~5iw)) =3 =55 4124
(27! (- Grmth(-5i0) 2" 2 T2 b (4.124)
x x 1 a—p8 1
o7 (Zia)®h (530)) = - ZFia. 4125
< (2,x) )\(2,x) n 2 0 pbn ( )
From (3.45), it follows that
a o?—-p> a-p a+ g

= —— 90 — F 4.126
w(x) 5 + 7 + 5y 22 5y LLIL ( )

and by ([@I23]) together with Proposition 4 we obtain —(zw(x))’ = v(z). From
(4I1I0) and (EIIT), it follows that o(z) = xw(z) + constant, where o is defined by
(£109). To determine the constant, note first that, as follows from (£I4]) and (417,
q(z) = C111 — (o + B)/2 as © — +oo, and hence, o(x) — 0 as © — +oo. On the
other hand, as follows from (@I0), (£I1]), we have zw(x) — 0 as © — +oo. Hence
the constant in question is zero, and we obtain (£I18]). Equation (£I19]) is obtained
similarly. a

Combining (£117)), (4.80), ([A87), and ([£22]), we obtain (L40). The expressions
(4806), (£R7), (£I18]), and (EII9) imply (L47).

Proposition 4.6 Let v be defined by (1.41). Then v(z) is real for x > 0 if Ima = 0,

a > —%, and Re 8 = 0.

Proof. Suppose that a > —%, Re8 = 0, and that ¥((;z) is a solution to the RH
problem for ¥ given in Section[I.3l Then it is straightforward to verify that the function
U defined by

T(C) = 0 U(—(C — 1/2))oret™078, if £Im ¢ > 0,
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with o1 = solves the RH problem for ¥(¢ + 1/2) for real x up to a constant

0 1
1 0)’
factor. Therefore, by uniqueness,

U(C+1/2) = C(z)70(C), (4.127)

where C(z) is independent of ¢. By (4II4]), it follows that a(0;z) = a(1l;x). Sub-

tracting the complex conjugate of ({I16) from (ZIIH]), we conclude that v(z) = v(x

o~

4.4 Solvability of the RH problem for ¥

In this section, we will prove Theorem [[.§] (ii) and Proposition Bl (ii): we will prove
that the RH problem for ¥ is solvable for all positive values of = if Ref = 0 and

1
Ima=0,a>-—3.

4.4.1 Vanishing lemma for Painlevé V

For a general class of RH problems, it is known that solvability of a RH problem is
equivalent to the triviality of a homogeneous version of the RH problem [16, 19, 28]. For
the case of Painlevé V, this has been used in [18] for a slightly different but equivalent
RH problem (cf. Remark[4.3]). In our case a sufficient (and necessary) condition to prove
the solvability of the RH problem for ¥ is given by the following so-called vanishing
lemma.

Lemma 4.7 (Vanishing lemma for Painlevé V) Let x > 0, Ima =0, Re8 = 0,
and suppose that Vo satisfies the RH conditions (a), (b), (d0), and (d1) of the RH
problem for W, with condition (c) replaced by the homogeneous asymptotic condition

p(C)ezs% = O™, as ¢ — oo. (4.128)
Then it follows that Yy = 0.

Remark 4.8 A vanishing lemma was proven in [I8] for a family of solutions to the
system (4.106)-(4.108]). Our solution, however, is not contained in this family, and the
vanishing lemma requires a different proof in our case. For the proof of the vanishing
lemma, we follow similar lines as in [I2] Section 5.3].

Proof of Lemma [4.7l Suppose we have a solution ¥y to the homogeneous RH
problem. We will then prove that Wy = 0. Let us first define a function M as follows,

1, =
M(¢) = Wo(¢ + 5)654"3, if Re¢ < 0,
M(Q) = Wo(¢ + )e oo, for Re¢ > 0,Tm ¢ > 0,
M(Q) = Wo(C + 5)emiPonesom, for Re¢ > 0, Tm € < 0.

Then M satisfies the following RH conditions.
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RH problem for M
(a) M is analytic in C\ (iR U [—3, 3]).

(b) M satisfies the following j Jump conditions on the contour (iR U (—3, 3)), with iR
oriented upwards and (—3, 3) oriented from left to right,

M. (¢) = M_(QVA(©), as ¢ € (0, +ic0), (4.120)
M (C) = M_(Q)Va(0), as ¢ € (~ioo,0), (4.130)
M (¢) = M_(¢)e ™), as ¢ € (—3,0), (4.131)
M(¢) = M_(¢)e ™ tR)es, as ¢ € (0,3), (4.132)
with
Vi(Q) = <_e79mex< e”fi;“), (4.133)
V2(¢) = < it e_j:z%ﬂg), (4.134)
(c) For fixed z > 0
M) =0(™"),  as(¢— oo (4.135)
(d0) As ¢ — —%,
C+312 I+ l\‘3‘>
M(C) = 212 21 7). .
©-0(f Eiins (4156)
(d1) As ¢ — +3,
C=37% - lﬁ)
M o 2l 4137
©=0(23+ 121 (4127

Let us now define a function H(¢) in terms of M and its Hermitian conjugate as
follows:

H(¢) = M(¢)M*(—(). (4.138)

Because of the condition (c) of the RH problem for M, we have that H({) = O(¢™?)
as ¢ — oo. Furthermore, using the jump condition (AI31)-(£I32) for M, we obtain
that H has no jump across (0, 1). (This is only true if Re 8 =0, Ima = 0.) Therefore,
H is meromorphic for Re{ > 0 with an isolated singularity at % 5, which is removable
because of ([4I30) and ([AI37). Using Cauchy’s theorem, we then have

+i00 +i00
/ H_(¢)d¢ =0, / H* (¢)d¢ = 0. (4.139)
Because of the jump conditions for M, the first integral implies that
0 +ioo
- M_(QVZ (QOM()dC + i M_(O)VF(Q)M* (¢)d¢ = 0. (4.140)
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Summing up this expression and the one obtained from the second integral in (£.139),
we find, using (LI33]), (LI134]) and the fact that x is real,

BREGI PT

M_(¢) <0 2e_m'ﬁ> M*(¢)d¢ = 0. (4.141)
—ico 0
Since Re 8 = 0, it follows immediately that the second column of M_ is identically
zero on iR \ {0}. From the jump conditions (£I129)-(41I30), it then follows that the
first column of M is zero on iR\ {0} as well. Therefore, we have that M;5({) = 0 for

Re( > 0, and M;1(¢) =0 for Re¢ < 0. Let us now define

i(6) = {Mj (¢), asRe(<0,

(4.142)
M;i1(¢), asRe( >0,

so that g; is analytic in C\ ({iRU [—%, %]) Furthermore, g; is bounded except near :l:%.
On iR, g has the following jump relation,

miag=aC, as ¢ € (0, +ic0),

(&
95,+(C) = gj,-(¢) x {e—me—r@‘, s ¢ € (—io0,0), (4.143)

Now we write g for the analytic continuation of g from the left half plane to C\ [— %, +00),

9(¢), as Re( <0,
g(¢) = < g(¢)emive¢, as Re¢ > 0,Im¢ > 0, (4.144)
g(Q)e ™>e*¢ as Re( >0, Im( < 0.

Set

h(¢) = g(—=(C+1)*?). (4.145)

It is now easy to verify that h is analytic and bounded for Re{ > 0, and that h({) =
O(e_mm) for { = £ioco. By Carlson’s theorem, this implies that h = 0 if x > 0. Tracing
back the previous steps, it follows that ¢ = 0, M = 0, and ¥y = 0, which proves the
vanishing lemma. a

Remark 4.9 The proof of the vanishing lemma does not apply if either « is not real or
B is not purely imaginary. The first failure is that the function H would not be analytic
across (0, %) in this case. A further problem in the proof would be that the matrices
Vi 4+ V" and V4 + V5 lose their symmetry, which results in non-zero off-diagonal entries
in (AI41). Tt is of course possible that the vanishing lemma can be proven in a different
way. Another possibility is that, given « and S, the RH problem is not solvable for

certain isolated values of z.

5 Asymptotics for Toeplitz determinants

Using the identities of Proposition [£.4] and the Fourier representation for V'(z), we can
rewrite (3.40) in the form, with x = 2nt,

d —t o

e _ > _
alnDn = (a4 B)n — (? _ﬁz)sinht + (« —ﬁ);kﬂ/ke Rt (a+ﬁ)kZ:1k:V_ke Kt

—t

1 1
+Za(a:) —v(x) {a +a <—

t sinht

> +2 i (Vi +V_y) cosh(k:t)} +O0(1/n)®(x).
k=1
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(5.1)

The expressions (£306]), (4.87), (AII8) yield the z — 0 expansion for o in (L.26);

and the expressions (£.22]), (4119) imply the 2 — +o00 expansion in (L.20]).
Because of the uniformity property of the error term in (5.1, the integration of this

identity from € > 0 to some t < ty gives uniformly for any 0 < e < ¢,

o—th otk
InD,(t) =InDy(e) + (a+ B)n(t —e) + Zk [Vk — (a+ B) ] [V_k — (a— ﬂ)T}
k=1
—ZkaV k+ a—f ZVke ke a—i—ﬂ)iv_ke_ke
k=1 k=1
+ [/%t @daz + (a? = A In{n(1 — 6_26)}:| —(a® = %) Inn + R,(t) + O(1/n);
2ne T
t 1 et >
R,(t) =— [ v(2nt) {a +a|-— = +2)Y k(Vp+V_ )cosh(k:t)} dt.
/5 (t smht> ; i k
(5.2)

If « is real and 8 is imaginary, we can take as a path of integration the interval
[e,t] of the real line as, according to Section [I.4] the functions o(z) and v(x) are real
analytic for positive z. The estimates ([.26), (L40]) ensure integrability at x = 0 and
x = +oo. In particular, the term in the square brackets in (5.2]) converges if € — 0.

For arbitrary 3, Rea > —1/2, we can choose a path of integration and the end-
point ¢ to avoid possible singular points {z1,...,xx}. The estimates (L.20]), (I.46]) were
obtained above for positive x. The restriction to real x was only imposed for simplicity
of notation. In fact, it is easy to verify that the estimates ([L26]), (L46) hold for any
path to zero and infinity within a sector —7/2 40 < argz <7/2446, 0 < < 7/2.

We have for R, (t) in (5.2):

Ru(t)] < C/Ot w@nw)ldu = O(/n),  n— o0, 0<t<t (5.3)

Now recall that (0.2)) is uniform in e, and In D, (t) is continuous at ¢ = 0. Therefore,
taking the limit ¢ — 0 in (5.2)) and using the Fisher-Hartwig asymptotics (L5l for
In D,,(0) gives the expression ([24]) of Theorem [I11

This concludes the proof of both Theorem [I.1] and Theorem [I[.4l

Acknowledgements

The authors are grateful to Alexander Abanov, Yan Fyodorov, and Jon Keating for
encouraging our interest in transition asymptotics for determinants. Tom Claeys is a
Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium), and was
also supported by the ESF program MISGAM. Alexander Its was supported in part by
NSF grant #DMS-0701768. Igor Krasovsky was supported in part by EPSRC grant
#EP /E022928)/1.

References

[1] F. V. Andreev, On special solutions of the fifth Painlevé equation, J. Math. Sci.
9 (2000), no. 1, 802-807.

43



2]

[10]

[11]

[12]

F.V. Andreev and F. V. Kitaev, On connection formulas for the asymptotics of
some special solutions of the fifth Painlevé equation. J. Math. Sci. 99 (2000), no.
1, 808-815.

F.V. Andreev and A.V. Kitaev, Connection formulae for asymptotics of the fifth
Painlevé transcendent on the real axis. Nonlinearity 13 (2000), no. 5, 1801-1840.

J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest
increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999),
1119-1178.

Bateman, Erdelyi. Higher transcendental functions, New York: McGraw-Hill,
1953-1955

E. Basor, Asymptotic formulas for Toeplitz determinants, Trans. Amer. Math.
Soc. 239 (1978), 33-65.

E. L. Basor and C. A. Tracy, Asymptotics of a tau-function and Toeplitz deter-
minants with singular generating functions, International J. of Mod. Phys. A 7,
Suppl. 1A (1992), 83-107

A. Bottcher, B. Silbermann, Toeplitz operators and determinants generated by
symbols with one Fisher-Hartwig singularity. Math. Nachr. 127 (1986), 95-123

A. Bottcher, B. Silbermann, Toeplitz matrices and determinants with Fisher-
Hartwig symbols. J. Funct. Anal. 63 (1985), 178-214

A. Bottcher, H. Widom, Two elementary derivations of the pure Fisher-Hartwig
determinant. Int. Eq. Op. Th. 53 (2005), 593-596

P. Deift, A. Its, and 1. Krasovsky, Toeplitz and Hankel determinants with Fisher-
Hartwig singularities [arXiv:0905.0443]

P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou, Uni-
form asymptotics for polynomials orthogonal with respect to varying exponential

weights and applications to universality questions in random matrix theory, Comm.
Pure Appl. Math. 52 (1999), 1335-1425.

P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou, Strong
asymptotics of orthogonal polynomials with respect to exponential weights, Comm.
Pure Appl. Math. 52 (1999), 1491-1552.

P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert
problems. Asymptotics for the MKdV equation, Ann. Math. 137 (1993), no. 2,
295-368.

T. Ehrhardt, A status report on the asymptotic behavior of Toeplitz determi-
nants with Fisher-Hartwig singularities, Operator Theory: Adv. Appl. 124, 217-
241 (2001).

A.S. Fokas, A.R. Its, A.A. Kapaev, and V.Yu. Novokshenov, “Painlevé transcen-
dents: the Riemann-Hilbert approach”, AMS Mathematical Surveys and Mono-
graphs 128 (2006).

44


http://arxiv.org/abs/0905.0443

[17]

[18]

[19]

[20]

[21]

A.S. Fokas, A.R. Its, and A.V. Kitaev, The isomonodromy approach to matrix
models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.

A.S. Fokas, U. Mugan, and X. Zhou, On the solvability of Painlevé I, III and V,
Inverse Problems 8 (1992), no. 5, 757-785.

A.S. Fokas and X. Zhou, On the solvability of Painlevé II and IV, Comm. Math.
Phys. 144 (1992), no. 3, 601-622.

F. Franchini and A.G. Abanov, Asymptotics of Toeplitz determinants and the
emptiness formation probability for the XY spin chain, J. Phys. A: Math. Gen.
38 (2005), 5069-5095.

B. L. Golinskii and I. A. Ibragimov, A limit theorm of G. Szegé. (Russian) Izv.
Akad. Nauk SSSR Ser. Mat. 35 (1971), 408-427.

I. A. Ibragimov, A theorem of Gabor Szegd. (Russian) Mat. Zametki 3 (1968)
693-702.

A. Its and I. Krasovsky, Hankel determinant and orthogonal polynomials for the
Gaussian weight with a jump, Contemp. Math. 458 (2008), 215-247.

A. Its, C. Tracy, H. Widom, Random words, Toeplitz determinants and integrable
systems. II, Phys. D 152/153 (2001), 199-224.

M. Jimbo, Monodromy problem and the boundary condition for some Painlevé
equations, Publ. RIMS, Kyoto Univ. 18 (1982), 1137-1161.

M. Jimbo and T. Miwa, Studies on holonomic quantum fields XVII, Proc. Japan
Acad. 56 A (1980), 405 — 410.

K. Johansson, On Szeg6s asymptotic formula for Toeplitz determinants and gen-
eralizations, Bull. Sci. Math. (2) 112 (1988), no. 3, 257-304.

S. Kamvissis, K.D.T-R McLaughlin, and P.D. Miller, “ Semiclassical soliton ensem-
bles for the focusing nonlinear Schrodinger equation”, Ann. Math. Studies 154,
Princeton Univ. Press, Princeton (2003).

B. M. McCoy, The connection between statistical mechanics and quantum field
theory [arxiv: hep-th/9403084]

B. M. McCoy, C. A. Tracy and T. T. Wu, Painlevé functions of the third kind, J.
Math. Phys. 18 (1977), 1058-1092

B.M. McCoy and S. Tang, Connection formulae for Painlevé functions. Solitons
and coherent structures (Santa Barbara, Calif., 1985), Phys. D 18 (1986), no. 1-3,
190-196.

B. M. McCoy and T. T. Wu, The two-dimensional Ising model. Harvard Univ.
Press: Cambridge MA, 1973.

P. Shukla, Level spacing functions and the connection problem of a fifth Painlevé
transcendent, J. Phys. A 28 (1995), no. 11, 3177-3195.

45


http://arxiv.org/abs/hep-th/9403084

[34] C. A. Tracy, Asymptotics of a tau function arising in the two-dimensional Ising
model, Commun. Math. Phys. 142 (1991), 297-311.

[35] H. Widom. Toeplitz determinants with singular generating functions. Amer. J.
Math. 95 (1973), 333-383

[36] T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Spin-spin correlation func-
tions for the two-dimensional Ising model: Exact theory in the scaling region,
Phys. Rev. B13 (1976), 316-374

46



	1 Introduction
	1.1 Application: the two-dimensional Ising model
	1.2 Statement of results
	1.3 The Painlevé V Riemann-Hilbert problem

	2 RH problem for orthogonal polynomials and a differential identity for the Toeplitz determinants
	3 Asymptotic analysis of the RH problem for orthogonal polynomials
	3.1 Normalization of the RH problem
	3.2 Opening of the lens
	3.3 Global parametrix away from 1
	3.4 Local parametrix near 1
	3.5 Final RH problem
	3.6 Asymptotics for ddtlnDn

	4 Model RH problem near z=1 and the fifth Painlevé equation
	4.1 Asymptotics for  as x+
	4.2 Asymptotics for  and  as x0
	4.2.1 Construction of the global parametrix
	4.2.2 Construction of the local parametrix near 0

	4.3 Differential system for 
	4.4 Solvability of the RH problem for 
	4.4.1 Vanishing lemma for Painlevé V


	5 Asymptotics for Toeplitz determinants

