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FROBENIUS MANIFOLDS FROM PRINCIPAL CLASSICAL

W -ALGEBRAS

YASSIR IBRAHIM DINAR

Abstract. We obtain polynomial Frobenius manifolds from classical
W -algebras associated to principal nilpotent elements in simple Lie al-
gebras.
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1. Introduction

This work is a continuation of [6] where we began to develop a construction
of algebraic Frobenius manifolds from Drinfeld-Sokolov reduction to support
a Dubrovin conjecture.

A Frobenius manifold is a manifold M with the structure of Frobenius
algebra on the tangent space Tt at any point t ∈ M with certain compati-
bility conditions [11]. We say M is semisimple or massive if Tt is semisim-
ple for generic t. This structure locally corresponds to a potential satis-
fying a system of partial differential equations known in topological field
theory as the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. We
say M is algebraic if, in the flat coordinates, the potential is an algebraic
function. Dubrovin conjecture is stated as follows: Semisimple irreducible
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algebraic Frobenius manifolds with positive degrees correspond to quasi-
Coxeter (primitive) conjugacy classes in finite Coxeter groups. We discussed
in [6] how the examples of algebraic Frobenius manifolds constructed from
Drinfeld-Sokolov reduction support this conjecture.

Let e be a principal nilpotent element in a simple Lie algebra g over
C. We fix, by using the Jacobson-Morozov theorem, a semisimple element h
and a nilpotent element f such that A = {e, h, f} is an sl2-triple. Let κ+1
be the Coxeter number of g. We prove the following

Theorem 1.1. The Slodowy slice

(1.1) Q′ := e+ ker ad f

has a natural structure of polynomial Frobenius manifold of degree κ−1
κ+1 .

Let us recall some structures related to the principal nilpotent element
e. The element h ∈ A defines a Z-grading on g called the Dynkin grading
given as follows

(1.2) g = ⊕i∈Zgi, gi = {q ∈ g : ad h(q) = iq}.

We fix below a certain nonzero element a ∈ g−2κ. It will follow from the
work of Kostant [20] that y1 = e + a is regular semisimple. The Cartan
subalgebra h′ = ker ad y1 is called the opposite Cartan subalgebra.

Our main idea is to use the theory of local bihamiltonian structure on a
loop space to construct the polynomial Frobenius manifold on Q′. Recall
that a bihamiltonian structure on a manifold M is two compatible Pois-
son brackets on M . It is well known that the dispersionless limit of a local
bihamiltonian structure on the loop space L(M) of a finite dimensional man-
ifold M (if it exists) always gives a bihamiltonian structure of hydrodynamic
type:

(1.3) {ti(x), tj(y)}1,2 = gij1,2(t(x))δ
′(x− y) + Γij

1,2;k(t(x))t
k
xδ(x − y),

defined on the loop space L(M). This in turn gives a flat pencil of met-

rics gij1,2 on M which under some assumptions corresponds to a Frobenius

structure on M [12].
We perform Drinfeld-Sokolov reduction [9] (see also [6] or [18]) using the

representation theory of A and the properties of h′ to obtain a bihamiltonian
structure on the affine loop space

(1.4) Q = e+ L(ker ad f).

To this end we start by defining a bihamiltonian structure P1 and P2 in
L(g). The Poisson structure P2 is the standard Lie-Poisson structure and
P1 depends on the adjoint action of a. In the Drinfeld-Sokolov reduction
the space Q will be transversal to an action of the adjoint group of L(n) on
a suitable affine subspace of L(g). Here n is the subalgebra

(1.5) n :=
⊕

i≤−2

gi
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The space of local functionals with densities in the ring R of invariant differ-
ential polynomials of this action is closed under P1 and P2. This defines the
Drinfeld-Sokolov bihamiltonian structure on Q since the coordinates of Q
can be interpreted as generators of the ring R. The second reduced Poisson
structure on Q is called the classical W -algebra. We call it principal

since it is related to the principal nilpotent element. We then prove that the
Drinfeld-Sokolov bihamiltonian structure admits a dispersionless limit and
gives the promised polynomial Frobenius manifold.

We mention that from the work of Dubrovin [10] and Hetrling [16] semisim-
ple polynomial Frobenius manifolds with positive degrees are already clas-
sified. They correspond to Coxeter conjugacy classes in Coxeter groups.
Dubrovin constructed all these polynomial Frobenius manifolds on the orbit
spaces of Coxeter groups using the results of [23]. There is another method
to obtain the classical W -algebra associated to principal nilpotent elements
known in the literature as Muira type transformation [9]. It was used in [14]
(see also [7]) to prove that the dispersionless limit of the Drinfeld-Sokolov
bihamiltonian structure gives the polynomial Frobenius manifold defined on
the orbit space of the corresponding Weyl group [10]. The proof depends
also on the invariant theory of Coxeter groups. In the present work we give
a new method to uniform the construction of polynomial Frobenius mani-
folds from Drinfeld-Sokolov reduction which depends only on the theory of
opposite Cartan subalgebras.

2. Preliminaries

2.1. Frobenius manifolds and local bihamiltonian structures. Start-
ing we want to recall some definitions and review the construction of Frobe-
nius manifolds from local bihamiltonian structure of hydrodynamics type.

A Frobenius manifold is a manifold M with the structure of Frobenius
algebra on the tangent space Tt at any point t ∈ M with certain com-
patibility conditions [11]. This structure locally corresponds to a potential
F(t1, ..., tn) satisfying the WDVV equations

(2.1) ∂ti∂tj∂tkF(t) η
kp ∂tp∂tq∂trF(t) = ∂tr∂tj∂tkF(t) η

kp ∂tp∂tq∂tiF(t)

where (η−1)ij = ∂tn∂ti∂tjF(t) is a constant matrix. Here we assume that the
quasihomogeneity condition takes the form

(2.2)

n∑

i=1

diti∂tiF(t) = (3− d)F(t)

where dn = 1. This condition defines the degrees di and the charge d of
the Frobenius structure on M . If F(t) is an algebraic function we call M an
algebraic Frobenius manifold.

Let L(M) denote the loop space of M , i.e the space of smooth maps from
the circle to M . A local Poisson bracket {., .}1 on L(M) can be written in
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the form [15]

(2.3) {ui(x), uj(y)}1 =

∞∑

k=−1

ǫk{ui(x), uj(y)}
[k]
1 .

Here ǫ is just a parameter and

(2.4) {ui(x), uj(y)}
[k]
1 =

k+1∑

s=0

Ai,j
k,sδ

(k−s+1)(x− y),

where Ai,j
k,s are homogenous polynomials in ∂j

xui(x) of degree s (we assign

degree j to ∂j
xui(x))and δ(x− y) is the Dirac delta function defined by

∫

S1

f(y)δ(x− y)dy = f(x).

The first terms can be written as follows

{ui(x), uj(y)}
[−1]
1 = F ij

1 (u(x))δ(x − y)(2.5)

{ui(x), uj(y)}
[0]
1 = gij1 (u(x))δ

′(x− y) + Γij
1k(u(x))u

k
xδ(x − y)(2.6)

Here the entries gij1 (u), F
ij
1 (u) and Γij

1k(u) are smooth functions on the finite
dimension space M . We note that, under the change of coordinates on M

the matrices gij1 (u), F
ij
1 (u) change as a (2, 0)-tensors.

The matrix F ij
1 (u) defines a Poisson structure on M . If F ij

1 (u(x)) = 0

and {ui(x), uj(y)}
[0]
1 6= 0 we say the Poisson bracket admits a disper-

sionless limit. If the Poisson bracket admits a dispersionless limit then

{ui(x), uj(y)}
[0]
1 defines a Poisson bracket on L(M) known asPoisson bracket

of hydrodynamic type. By nondegenerate Poisson bracket of hydrody-

namic type we mean those with the metric gij1 is nondegenerate. In this case

the matrix gij1 (u) defines a contravariant flat metric on the cotangent space

T ∗M and Γij
1k(u) is its contravariant Levi-Civita connection [13].

Assume there are two Poisson structures {., .}2 and {., .}1 on L(M) which
form a bihamiltonian structure, i.e {., .}λ := {., .}2 + λ{., .}1 is a Poisson
structure on L(M) for every λ. Consider the notations for the leading terms
of {., .}1 given above and write the leading terms of {., .}2 in the form

{ui(x), uj(y)}
[−1]
2 = F ij

2 (u(x))δ(x − y)(2.7)

{ui(x), uj(y)}
[0]
2 = gij2 (u(x))δ

′(x− y) + Γij
2k(u(x))u

k
xδ(x − y)(2.8)

Suppose that {., .}1 and {., .}2 admit a dispersionless limit as well as {., .}λ
for generic λ. In addition, assume the corresponding Poisson brackets of

hydrodynamics type are nondegenerate. Then by definition gij1 (u) and gij2 (u)

form what is called flat pencil of metrics [12], i.e gijλ (u) := gij2 (u)+λgij1 (u)
defines a flat metric on T ∗M for generic λ and its Levi-Civita connection is

given by Γij
λk(u) = Γij

2k(u) + λΓij
1k(u).
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Definition 2.1. A contravariant flat pencil of metrics on a manifold M

defined by the matrices gij1 and gij2 is called quasihomogenous of degree

d if there exists a function τ on M such that the vector fields

E := ∇2τ, Ei = gis2 ∂sτ(2.9)

e := ∇1τ, ei = gis1 ∂sτ

satisfy the following properties

(1) [e,E] = e.
(2) LE( , )2 = (d− 1)( , )2.
(3) Le( , )2 = ( , )1.
(4) Le( , )1 = 0.

Here for example LE denote the Lie derivative along the vector field E

and ( , )1 denote the metric defined by the matrix gij1 . In addition, the
quasihomogenous flat pencil of metrics is called regular if the (1,1)-tensor

(2.10) Rj
i =

d− 1

2
δji +∇1iE

j

is nondegenerate on M .

The connection between the theory of Frobenius manifolds and flat pencil
of metrics is encoded in the following theorem

Theorem 2.2. [12] A contravariant quasihomogenous regular flat pencil of
metrics of degree d on a manifold M defines a Frobenius structure on M of
the same degree.

It is well known that from a Frobenius manifold we always have a flat
pencil of metrics but it does not necessary satisfy the regularity condition
(2.10). In the notations of (2.1) from a Frobenius structure on M , the flat
pencil of metrics is found from the relations

ηij = gij1(2.11)

gij2 = (d− 1 + di + dj)η
iαηjβ∂α∂βF

This flat pencil of metric is quasihomogenous of degree d with τ = t1.
Furthermore we have

(2.12) E =
∑

i

dit
i∂ti, e = ∂tn

2.2. Principal nilpotent element and opposite Cartan subalgebra.

We review some facts about principal nilpotent elements in simple Lie al-
gebra we need to perform the Drinfeld-Sokolov reduction. In particular, we
recall the concept of the opposite Cartan subalgebra introduced by Kostant
which is the main ingredient in this work.

Let g be a simple Lie algebra over C of rank r. We fix a principal nilpotent
element e ∈ g. By definition a nilpotent element is called principal if ge :=
ker ade has dimension equals to r. Using the Jacobson-Morozov theorem we
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fix a semisimple element h and a nilpotent element f in g such that {e, h, f}
generate sl2 subalgebra A ⊂ g, i.e

(2.13) [h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

The element h define a Z-grading on g called the Dynkin grading given
as follows

(2.14) g = ⊕i∈Zgi, gi = {q ∈ g : ad h(q) = iq}.

It is well known that gi = 0 if i is odd and

(2.15) b = ⊕i≤0gi

is a Borel subalgebra with

(2.16) n = ⊕i≤−2gi = [b, b]

is a nilpotent subalgebra.
We normalize the invariant bilinear from 〈.|.〉 on g such that 〈e|f〉 = 1

and we denote the exponents of the Lie algebra g as follows

(2.17) 1 = η1 < η2 ≤ η3 . . . ≤ ηr−1 < ηr.

We will refer to the number ηr by κ. Recall that κ+1 is the Coxeter number
of g and the exponents satisfy the relation

(2.18) ηi + ηr−i+1 = κ+ 1.

We also recall that for all simple Lie algebras the exponents are different
except for the Lie algebra of type D2n the exponent n− 1 appears twice.

Consider the restriction of the adjoint representation of g to A. Under
this restriction g decomposes to irreducible A-submodules

(2.19) g = ⊕V i.

with dimV i = 2ηi + 1 [17]. We normalize this decomposition by using the
following proposition

Proposition 2.3. There exists a decomposition of g into a sum of ir-
reducible A-submodules g = ⊕r

i=1V
i in such a way that there is a basis

Xi
I , I = −ηi,−ηi + 1, ..., ηi in each V i, i = 1, . . . , r satisfying the following

relations

(2.20) Xi
I =

1

(ηi + I)!
ad eηi+I Xi

−ηi
, I = −ηi,−ηi + 1, . . . , ηi.

and

(2.21) < Xi
I ,X

j
J >= δi,jδI,−J(−1)ηi−I+1

(
2ηi

ηi − I

)
.

Furthermore

adhXi
I = 2IXi

I .(2.22)

ad eXi
I = (ηi + I + 1)Xi

I+1.

ad f Xi
I = (ηi − I + 1)Xi

I−1.
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Proof. The proof that one could compose the Lie algebra as irreducible A-
submodules satisfying (2.20) and (2.22) is standard and can be found in
[17] or [20]. Let g = ⊕r

i=1V
i be such decomposition. It is easy to prove

〈V i|V j〉 = 0 in the case ηi 6= ηj by applying the step operators ad e and
using the invariance of the bilinear form. Hence the proof is reduced to
the case of irreducible A-submodules of the same dimension. But there is
at most two irreducible submodules of the same dimension. Assume V i1

and V i2 have the same dimension and denote the corresponding basis Xi1
I

and Xi1
J , respectively. Then one can prove by using the step operator ad e

that the subspaces V i1 and V i2 are orthogonal if and only if 〈Xi1
0 |Xi2

0 〉 = 0.

But it obvious that the restriction of the invariant bilinear form to Xi1
0 and

Xi2
0 is nondegenerate. Hence by applying the Gram-Schmidt procedure we

can assume that 〈Xi1
0 |Xi2

0 〉 = 0. Therefore, we can assume that the given
decomposition satisfying 〈V i|V j〉 = 0 if i 6= j. It remains to obtain the
normalization (2.21). From the invariance of the bilinear form we have

(2.23) 〈h.Xi
I |X

i
J〉 = (2I)〈Xi

I |X
i
J〉

while

(2.24) − 〈Xi
I |h.X

i
J 〉 = −(2J)〈Xi

I |X
i
J〉

Therefore 〈Xi
I |X

j
J 〉 = 0 if I + J 6= 0. We calculate using the step operator

ad e where I ≥ 0 the value

〈Xi
I |X

i
−I〉 =

1

(ηi − I)
〈Xi

I |e.X
i
−I−1〉(2.25)

=
−1

ηi − I
〈e.Xi

I |X
i
−I−1〉

=
(−1)(ηi − I + 1)

ηi − I
〈Xi

I+1|X
i
−I−1〉

=
(−1)ηi−I(ηi − I + 1)(ηi − I + 2) . . . 2ηi

(ηi − I)(ηi − I − 1) . . . (1)
〈Xi

ηi
|Xi

−ηi
〉

= (−1)ηi−I

(
2ηi

ηi − I

)
〈Xi

ηi
|Xi

−ηi
〉.

The result follows by multiplying Xi
I by the value of −〈Xi

ηi
|Xi

−ηi
〉
−1

. We
note that the formula (2.21) will give the same result when replacing I with
−I. This ends the proof.

�

Note that the normalized basis for V 1 are X1
1 = −e, X1

0 = h, X1
−1 = f

since it is isomorphic to A as a vector subspace.
It is easy to see that

(2.26) ad e : gi → gi+2
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is injective for i ≤ −1 and surjective for i ≥ 0. Hence the subalgebra
gf := ker ad f has a basis Xi

−ηi
, i = 1, . . . , r and

(2.27) b = gf ⊕ ad e(n).

The affine space

Q′ = e+ gf

is called the Slodowy slice. It is transversal to the orbit of e under the
adjoint group action.

We summarize Kostant results about the relation between the principal
nilpotent element e and Coxeter conjugacy class in Weyl group of g.

Theorem 2.4. [20] The element y1 = e+Xr
−2κ is regular semisimple. De-

note h′ the Cartan subalgebra containing y1, i.e h′ := ker ad y1 and con-
sider the adjoint group element w defined by w := exp πi

κ+1ad h. Then w

acts on h′ as a representative of the Coxeter conjugacy class in the Weyl
group acting on h′. Furthermore, the element y1 can be completed to a basis
yi, i = 1, . . . , r for h′ having the form

yi = vi + ui, ui ∈ g2ηi , vi ∈ g2ηi−2(κ+1)

and such that yi is an eigenvector of w with eigenvalue exp πiηi
κ+1 .

Let a denote the element Xr
−2κ. The element y1 = e+a is called a cyclic

element and the Cartan subalgebra h′ = ker ad y1 is called the opposite

Cartan subalgebra. We fix a basis yi for h
′ satisfying the theorem above.

It is easy to see that ui, i = 1, ..., r form a homogenous basis for ge. We
assume the basis yi are normalized such that

(2.28) ui = −Xi
ηi
.

Form construction this normalization does not effect y1.
Let us define the matrix of the invariant bilinear form on h′

(2.29) Aij := 〈yi|yj〉 = −〈Xi
ηi
|vj〉 − 〈vi|X

i
ηj
〉, i, j = 1, . . . , r.

The following proposition summarize some useful properties we need in the
following sections.

Proposition 2.5. The matrix Aij is a nondegenerate and antidiagonal with
respect to the exponents ηi, i.e Aij = 0, if ηi + ηj 6= κ + 1. Moreover, the
commutators of a and Xi

ηi
satisfy the relations

(2.30)
〈[a,Xi

ηi
]|Xj

ηj−1〉

2ηj
+

〈[a,Xj
ηj ]|X

i
ηi−1〉

2ηi
= Aij

for all i, j = 1, . . . , r.
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Proof. The matrix Aij is nondegenerate since the restriction of the invariant
bilinear form to a Cartan subalgebra is nondegenerate. The fact that it is
anidiagonal with respect to the exponents follows from the identity

(2.31) 〈yi|yj〉 = 〈wyi|wyj〉 = exp
(ηi + ηj)πi

κ+ 1
〈yi|yj〉

where w := exp πi
κ+1ad h. For the second part of the proposition we note

that the commutator of y1 = e+ a and yi = vi −Xi
ηi

gives the relation

(2.32) [e, vi] = [a,Xi
ηi
], i = 1, ..., r.

Which in turn give the following equality for every i, j = 1, ..., r

〈[a,Xi
ηi
]|Xj

ηj−1〉 = 〈[e, vi]|X
j
ηj−1〉 = −〈vi|[e,X

j
ηj−1]〉(2.33)

= −2ηj〈vi|X
j
ηj
〉

but then

(2.34)
〈[a,Xi

ηi
]|Xj

ηj−1〉

2ηj
+

〈[a,Xj
ηj ]|X

i
ηi−1〉

2ηi
= −〈vi|X

j
ηj
〉 − 〈vj |X

i
ηi
〉 = Aij .

�

3. Drinfeld-Sokolov reduction

We will review the standard Drinfeld-Sokolov reduction associated with
the principal nilpotent element [9] (see also [6]).

We introduce the following bilinear form on the loop algebra L(g):

(3.1) (u|v) =

∫

S1

〈u(x)|v(x)〉dx, u, v ∈ L(M),

and we identify L(g) with L(g)∗ by means of this bilinear form. For a
functional F on L(g) we define the gradient δF(q) to be the unique element
in L(g) such that

(3.2)
d

dθ
F(q + θṡ) |θ=0=

∫

S1

〈δF|ṡ〉dx for all ṡ ∈ L(g).

Recall that we fixed an element a ∈ g such that y1 = e + a is a cyclic
element. Let us introduce a bihamiltonian structure on L(g) by means of
Poisson tensors

P2(v)(q(x)) =
1

ǫ
[ǫ∂x + q(x), v(x)].(3.3)

P1(v)(q(x)) =
1

ǫ
[a, v(x)].

It is well known fact that these define a bihamiltonian structure on L(g)
[21].

We consider the gauge transformation of the adjoint group G of L(g)
given by

q(x) → exp ad s(x)(∂x + q(x))− ∂x(3.4)
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where s(x), q(x) ∈ L(g). Following Drinfeld and Sokolov [9], we consider
the restriction of this action to the adjoint group N of L(n).

Proposition 3.1. ([6], [22]) The action of N on L(g) with Poisson tensor

(3.5) Pλ := P2 + λP1

is Hamiltonian for all λ. It admits a momentum map J to be the projection

J : L(g) → L(n+)

where n+ is the image of n under the killing map. Moreover, J is Ad∗-
equivariant.

We take e as regular value of J . Then

(3.6) S := J−1(e) = L(b) + e,

since b is the orthogonal complement to n. It follows from the Dynking
grading that the isotropy group of e is N .

Recall that the space Q is defined as

(3.7) Q := e+ L(gf ).

The following proposition identified S/N with the space Q. Which allows
us to define the set R of functionals on Q as functionals on S which have
densities in the ring R.

Proposition 3.2. [9] The space Q is a cross section for the action of N on
S, i.e for any element q(x) + e ∈ S there is a unique element s(x) ∈ L(n)
such that

(3.8) z(x) + e = (exp ad s(x))(∂x + q(x))− ∂x ∈ Q.

The entries of z(x) are generators of the ring R of differential polynomials
on S invariant under the action of N .

The Poisson pencil Pλ (3.3) is reduced on Q using the following lemma.

Lemma 3.3. [9] Let R be the functionals on Q with densities belongs to R.
Then R is a closed subalgebra with respect to the Poisson pencil Pλ.

Hence Q has a bihamiltonian structure PQ
1 and PQ

2 from P1 and P2,

respectively. The reduced Poisson structure PQ
2 is called a classical W -

algebra. For a formal definition of classical W -algebras see [19]. We obtain
the reduced bihamiltonian structure by using lemma 3.3 as follows. We write
the coordinates of Q as differential polynomials in the coordinates of S by
means of equation (3.8) and then apply the Leibnitz rule. For u, v ∈ R the
Leibnitz rule have the following form

(3.9) {u(x), v(y)}λ =
∂u(x)

∂(qIi )
(m)

∂m
x

( ∂v(y)

∂(qJj )
(n)

∂n
y

(
{qIi (x), q

J
j (y)}λ

))

The generators of the invariant ring R will have nice properties when
we use the normalized basis we developed in last section. Let us begin by
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writing the equation of gauge fixing (3.8) after introducing a parameter τ
as follows

q(x) + e = τ

r∑

i=1

ηi∑

I=0

qIiX
i
−I + e ∈ S

z(x) + e = τ

r∑

i=1

zi(x)Xi
−ηi

+ e ∈ Q

s(x) = τ

r∑

i=1

ηi∑

I=1

sIi (x)X
i
−I ∈ L(n).

Then equation (3.8) expands to

r∑

i=1

zi(x)Xi
−ηi

+

r∑

i=1

ηi∑

I=1

(ηi − I + 1)sIiX
i
−I+1 =

r∑

i=1

ηi∑

I=0

qIi (x)X
i
−I −

r∑

i=1

ηi∑

I=1

∂xs
I
i (x)X

i
−I +O(τ).

(3.10)

It obvious that any invariant zi(x) has the form

zi(x) = qηii − ∂xs
ηi
i +O(τ)(3.11)

= qηii (x)− ∂xq
ηi−1
i +O(τ).

That is, we obtained the linear term of each invariant zi(x). Furthermore,
since 〈e|f〉 = 1 then z1(x) has the expression

z1(x) = q11(x)− ∂xs
1
1+τ〈e|[s1i (x)X

i
−1, q

0
iX

i
0]〉

+
1

2
τ〈e|[s1i (x)X

i
−1, [s

I
i (x)X

i
−1, e]]〉.

(3.12)

Which is simplified by using the identity

(3.13) [s1i (x)X
i
−1, [s

I
i (x)X

i
−1, e]] = −[s1i (x)X

i
−1, q

0
i (x)X

i
0]

and
(3.14)

〈e|[s1i (x)X
i
−1, q

0
iX

i
0]〉 = −〈[s1i (x)X

i
−1, e]|q

0
i (x)X

i
0〉 = (q0i (x))

2〈Xi
0|X

i
0〉

with s11(x) = q01(x) to the expression

(3.15) z1(x) = q11(x)− ∂xq
0
1(x) +

1

2
τ
∑

i

(q0i (x))
2〈Xi

0|X
i
0〉

The invariant z1(x) is called a Virasoro density and the expression above
agree with [1].

Our analysis will relay on the quasihomogeneity of the invariants zi(x)
in the coordinates of q(x) ∈ L(b) and their derivatives. This property is
summarized in the following corollary



12 YASSIR IBRAHIM DINAR

Corollary 3.4. If we assign degree 2J +2l+2 to ∂l
x(q

J
i (x)) then zi(x) will

be quasihomogenous of degree 2ηi + 2. Furthermore, each invariant zi(x)

depends linearly only on qηii (x) and ∂xq
ηi−1
i (x). In particular, zi(x) with

i < n does not depend on ∂l
xq

ηr
r (x) for any value l.

Let us fix the following notations for the leading terms of the Drinfeld-
Sokolov bihamiltonian structure on Q

{zi(x), zj(y)}Q1 =
∞∑

k=−1

ǫk{zi(x), zj(y)}
[k]
1(3.16)

{zi(x), zj(y)}Q2 =
∞∑

k=−1

ǫk{zi(x), zj(y)}
[k]
2 .

where

{zi(x), zj(y)}
[−1]
1 = F ij

1 (z(x))δ(x − y)(3.17)

{zi(x), zj(y)}
[0]
1 = gij1 (z(x))δ

′(x− y) + Γij
1k(z(x))z

k
xδ(x − y)

{zi(x), zj(y)}
[−1]
2 = F ij

2 (z(x))δ(x − y)

{zi(x), zj(y)}
[0]
2 = gij2 (z(x))δ

′(x− y) + Γij
2k(z(x))z

k
xδ(x − y)

3.1. The nondegeneracy condition. In this section we find the antidiag-

onal entries of the matrix gij1 with respect to the exponents of g, i.e the entry

gij1 with ηi + ηj = κ+ 1. Our goal is to prove this matrix is nondegenerate.
Let Ξi

I denote the value 〈Xi
I |X

i
I〉 and we set

[a,Xi
I ] =

∑

j

∆ij
I X

j
I−ηr

.

By definition, for a functional F on g

(3.18) δF(x) =
∑

i

ηi∑

I=0

1

Ξi
I

δF

δqIi (x)
Xi

I

and the Poisson brackets of two functionals I and F on g reads

(3.19) {I,F}1 = 〈δI(x)|[a, δF(x)]〉 =
∑

i

ηi∑

I=0

∑

j

∆ij
I

Ξi
I

δI

δqκ−I
j (x)

δF

δqIi (x)
.

Therefore, the Poisson brackets in coordinates have the form

(3.20) {qκ−I
j (x), qIi (y)}1 =

∆ij
I

Ξi
I

δ(x− y).
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Recall that the Poisson bracket {v(x), u(y)}Q1 of elements u, v ∈ R is
obtained by the Leibnitz rule which expands as

{v(x), u(y)}Q1 =
∑

i,I;j

∑

l,h

∆ij
I

Ξi
I

∂v(x)

∂(qκ−I
j )(l)

∂l
x

( ∂u(y)

∂(qIi )
(h)

∂h
y (δ(x − y))

)

=
∑

i,I;j

∑

l,h,m,n

(−1)h
(
h

m

)(
l

n

)
∆ij

I

Ξi
I

∂v(x)

∂(qκ−I
j )(l)

( ∂u(x)

∂(qIi )
(h)

)m+n

δh+l−m−n(x− y).

Here we omitted the ranges of the indices since no confusion can arise. Let
A(v, u) denote the coefficient of δ′(x− y)

(3.21) A(v, u) =
∑

i,I,J

∑

h,l

(−1)h(l + h)
∆ij

I

Ξi
I

∂v(x)

∂(qκ−I
j )(l)

( ∂u(x)

∂(qIi )
(h)

)h+l−1

Obviously, we obtain the entry gij1 from A(zi, zj).

Lemma 3.5. If ηi + ηj < κ + 1 then A(zi, zj) = 0. In particular, the

matrix gij1 is lower antidiagonal with respect to the exponents of g and the
antidiagonal entries are constants.

Proof. We note that if v(x) and u(x) are in R and quasihomogenous of
degree θ and ξ, respectively, then A(v, u) will be quasihomogenous of degree

θ + ξ − (2κ + 2)− 4.

The proof is complete by observing that the generators zi(x) of the ring R
is quasihomogeneous of degree 2ηi + 2. �

Proposition 3.6. The matrix gij1 is nondegenerate and its determinant is
equal to the determinant of the matrix Aij defined in (2.5).

Proof. From the last lemma we need only to consider the expression A(zn, zm)
with ηn + ηm = κ+ 1. Here

(3.22) A(zn, zm) =
∑

i,I,J

∑

h,l

(−1)h(l + h)
∆ij

I

Ξi
I

∂zn(x)

∂(qκ−I
j )(l)

( ∂zm(x)

∂(qIi )
(h)

)h+l−1

where zm and zn are quasihomogenous of degree 2ηm +2 and 2κ− 2ηm +4,

respectively. The expression ∂zm(x)

∂(qIi )
(h) gives the constrains

2I + 2 ≤ 2ηm + 2(3.23)

2κ− 2I + 2 ≤ 2κ− 2ηm + 4

which implies
ηm − 1 ≤ I ≤ ηm

Therefore the only possible values for the index I in the expression of
A(zn, zm) that make sense are ηm and ηm − 1. Consider the partial sum-
mation of A(zn, zm) when I = ηm. The degree of zm yields h = 0 and that
zm depends linearly on qηmi . But then equation (3.11) implies i is fixed and
equals to m. A similar argument on zn(x) we find that the indices l and j
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are fixed and equal to 1 and n, respectively. But then the partial summation
when I = ηm gives the value

∆mn
ηm

Ξm
ηm

∂zn(x)

∂(qκ−ηm
n )(1)

∂zm(x)

∂(qηmm )(0)
= −

∆mn
ηm

Ξm
ηm

.

We now turn to the partial summation of A(zn, zm) when I = ηm − 1. The
possible values for h are 1 and 0. When h = 0 we get zero since l and h
can only be zero. When h = 1 we get, similar to the above calculation, the
value

(−1)
∆mn

ηm−1

Ξi
I

∂zn(x)

∂(qκ−ηm
n )(0)

∂zm(x)

∂(qηm−1
m )(1)

=
∆mn

ηm−1

Ξm
ηm−1

.

Hence we end with the expression

A(zn, zm) =
∆mn

ηm−1

Ξm
ηm−1

−
∆mn

ηm

Ξm
ηm

=
〈[a,Xn

ηn ]|X
m
ηm−1〉

2ηm
+

〈[a,Xm
ηm ]|Xn

ηn−1〉

2ηn
= Amn

where we derive the last equality in proposition 2.5. Hence the determinate

of gij1 equals to the determinant of Amn which is nondegenerate. �

3.2. Differential relation. We want to observe a differential relation be-
tween the first and the second Poisson brackets. This relation is a con-
sequence of the fact that zr(x) is the only generator of the ring R which
depends explicitly on qκr (x) and this dependence is linear.

Proposition 3.7. The entries of matrices of the reduced bihamiltonian
structure on Q satisfy the relations

∂zrF
ij
2 = F ij

1(3.24)

∂zrg
ij
2 = gij1

Proof. The fact that we calculate the reduced Poisson structure by using
Leibnitz rule and zr(x) depends on qκr (x) linearly, means that the invariant

zr(x) will appear on the reduced Poisson bracket {zi(x), zj(y)}Q2 only as a
result of the following “brackets”

(3.25) [qκ−I
j (x), qIi (y)] := qκr (x)

∆ij
I

Ξi
I

δ(x− y)

which are the terms of the second Poisson bracket on L(g) depending ex-
plicitly on qκr (x). We expand the “brackets” [zi(x), zj(y)] by imposing the
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Leibnitz rule. We find the coefficient of δ(x − y) and δ′(x − y) are, respec-
tively,

B =
∑

i,I,J

∑

h,l

(−1)h
∆ij

I

Ξi
I

qκr (x)
∂zi(x)

∂(qκ−I
j )(l)

( ∂zj(x)

∂(qIi )
(h)

)h+l

(3.26)

D =
∑

i,I,J

∑

h,l

(−1)h(l + h)
∆ij

I

Ξi
I

qκr (x)
∂zi(x)

∂(qκ−I
j )(l)

( ∂zj(x)

∂(qIi )
(h)

)h+l−1

Obviously, We have ∂zrF
ij
2 from ∂qκr B and ∂zrg

ij
2 from ∂qκr D. But we see

that ∂qκr D is just the coefficient A(zi, zj) of δ′(x−y) of {zi(x), zj(y)}Q1 . This
prove that

∂zrg
ij
2 = gij1 .

A similar argument show that

∂zrF
ij
2 = F ij

1 .

�

4. Some results from Dirac reduction

We recall that the Poisson bracket {., .}Q2 can be obtained by performing
the Dirac reduction of {., .}2 onQ. We derive from this some facts concerning
the dispersionless limit of the bihamiltonian structure on Q. Let n denote
the dimension of g.

Let ξI , I = 1, . . . ,n be a total order of the basis Xi
I such that

(1) The first r are

(4.1) X1
−η1

< X2
−η2

< . . . < Xr
−ηr

(2) The matrix

(4.2) 〈ξI |ξJ〉, I, J = 1, . . . ,n

is antidiagonal.

Let ξ∗I denote the dual basis of ξI under 〈.|.〉. Note that if ξI ∈ gµ then
ξ∗I ∈ g−µ.

We extend the coordinates on Q to all L(g) by setting

(4.3) zI(b(x)) := 〈b(x) − e|ξ∗I 〉, I = 1, . . . ,n.

Let us fix the following notations for the structure constants and the bilinear
form on g

(4.4) [ξ∗I , ξ
∗
J ] :=

∑
cIJK ξ∗K , g̃IJ = 〈ξ∗I |ξ

∗
J〉.

Now consider the following matrix differential operator

(4.5) F
IJ = ǫg̃IJ∂x + F̃ IJ .

Here
F̃ IJ =

∑

K

(
cIJK zK(x)

)
.
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Then the Poisson brackets of P2 will have the form

(4.6) {zI(x), zJ (y)}2 = F
IJ 1

ǫ
δ(x− y).

Proposition 4.1. [1] The second Poisson bracket {., .}Q2 can be obtained by
performing Dirac reduction of {., .}2 on Q.

A consequence of this proposition is the following

Proposition 4.2. [1]

{z1(x), z1(y)}2 = ǫδ
′′′

(x− y) + 2z1(x)δ′(x− y) + z1xδ(x − y)(4.7)

{z1(x), zi(y)}2 = (ηi + 1)zi(x)δ′(x− y) + ηiz
i
xδ(x − y).

Remark 4.3. The bihamiltonian reduction is a method introduced in [2] to
reduced a bihamiltonian structure to a certain submanifold. We can use it
to obtain a bihamiltonian structure from (3.3) associated to the principal
nilpotent element e [3]. The resulting bihamiltonian structure is defined on
Q. We generalize the bihamiltonian reduction in [6] by imposing some con-
ditions. The result is a bihamiltonian structure associated to any nilpotent
element in a simple Lie algebra. This generalization also simplifies the bi-
hamiltonian reduction given in [3]. The Drinfeld-Sokolov reduction is also
generalized to any nilpotent element in simple Lie algebra [19]. A similar
result to proposition 4.1 for generalized Drinfeld-Sokolov reduction was ob-
tained in [1]. We used it in [8] to prove that the generalized Drinfeld-Sokolov
reduction and the generalized bihamiltonian reduction for any nilpotent el-
ement are the same. This in turn complete the comparison between the
two reductions began by the work of Pedroni and Casati [3]. In [6] we
also obtained proposition 4.2 by performing the generalized bihamiltonian
reduction.

For the rest of this section we consider three types of indices which have
different ranges; capital letters I, J,K, ... = 1, ..,n, small letters i, j, k, ... =
1, ...., r and Greek letters α, β, δ, ... = r+1, ...,n. Recall that the space Q is
defined by zα = 0.

We note that the matrix F̃ IJ define the finite Lie-Poisson structure on g.
It is well known that the symplectic subspaces of this structure are the orbit
spaces of g under the adjoint group action and we have r global Casimirs
[21]. Since the Slodowy slice Q′ = e+ gf is transversal to the orbit of e, the

minor matrix F̃αβ is nondegenerate. Let F̃αβ denote its inverse.

Proposition 4.4. [6] The Dirac formulas for the leading terms of {., .}Q2 is
given by

(4.8) F ij
2 = (F̃ ij − F̃ iβF̃βαF̃

αj)

(4.9) gij2 = g̃ij − g̃iβF̃βαF̃
αj + F̃ iβF̃βαg̃

αϕF̃ϕγF̃
γj − F̃ iβF̃βαg̃

αj .

Now we are able to prove the following
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Proposition 4.5. The Drinfeld-Sokolov bihamiltonian structure on Q ad-
mits a dispersionless limit. The corresponding bihamiltonian structure of
hydrodynamic type gives a flat pencil of metrics on the Slodowy slice Q′.

Proof. We note that (4.8) is the formula of the Dirac reduction of the Lie-
Poisson brackets of g to the finite space Q′. The fact that Slodowy slice
is transversal to the orbit space of the nilpotent element and this orbit has

dimension n−r yield F ij
2 is trivial. From proposition 4.2 it follows that gij2 is

not trivial. This prove that the brackets {., .}Q2 admits a dispersionless limit.

From propositions 3.6 and 3.7 it follows that {., .}Q1 admits a dispersionless

limit and the matrix gij2 is nondegenerate. Therefore, the two matrices gij1
and gij2 define a flat pencil of metrics on Q′. �

Now we want to study the quasihomogeneity of the entries of the matrix

gij2 . We assign the degree µI + 2 to zI(x) if ξ∗I ∈ gµI
. These degrees agree

with those given in corollary 3.4. We observe that degree zn−I+1 equal to

−µI + 2 from our order of the basis, and an entry F̃ IJ is quasihomogenous
of degree µI + µJ + 2 since [gµI

, gµJ
] ⊂ gµI+µJ

, .
The following proposition proved in [5]

Proposition 4.6. The matrix F̃βα restricted to Q is polynomial and the

entry F̃βα is quasihomogenous of degree −µβ − µα − 2

Proposition 4.7. The entry gij2 is quasihomogenous of degree 2ηi + 2ηj

Proof. We will derive the quasihomogeneity from the expression (4.9). We
know that the matrix g̃IJ is constant antidiagonal, i.e gIJ = CIδI

n−J+1 where

CI are nonzero constants. In particular gij = 0. Now for a fixed i we have

g̃iβF̃βαF̃
αj = CiF̃n−i+1,αF̃

αj .

But then the left hand sight is quasihomogenous of degree

µj + µα + 2− µα − (−µi)− 2 = µj + µi = 2ηi + 2ηj .

A similar argument show that F̃ iβF̃βαg̃
αj is quasihomogeneous of degree

2ηi + 2ηj . Let us consider

F̃ iβF̃βαg̃
αϕF̃ϕγF̃

γj =
∑

α

CαF̃ iβF̃βαF̃n−α+1,γF̃
γj .

Then any term in this summation will have the degree

µi + µβ + 2− µβ − µα − 2− µn−α+1 − µγ − 2 + µγ + µj + 2 = 2ηi + 2ηj

This complete the proof. �
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5. Polynomial Frobenius manifold

Let us consider the finite dimension manifold Q′ defined by the coordi-
nates z1, ..., zn. We will obtain a natural polynomial Frobenius structure on
Q′.

The proof of the following proposition depends only on the quasihomo-

geneity of the matrix gij1 .

Proposition 5.1. [10] There exist quasihomogenous polynomials coordi-
nates of degree di in the form

ti = zi + T i(z1, ..., zi−1)

such that the matrix gij1 (t) is constant antidiagonal.

For the remainder of this section, we fix a coordinates (t1, ..., tn) satisfying
the proposition above. The following proposition emphasis that under this

change of coordinates some entries of the matrix gij2 remain invariant.

Proposition 5.2. The second metric gij2 (t) and its Levi-Civita connection
have the following entries

(5.1) g1,n2 (t) = (ηi + 1)ti, Γ1j
2k(t) = ηjδ

j
k

Proof. We know from proposition 4.2 that in the coordinates zi the matrix

gij2 (z) and its Levi-Civita connection have the following entries

(5.2) g1,n2 (z) = (ηi + 1)zi, Γ1j
2k(z) = ηjδ

j
k

Let E′ denote the Euler vector field give by

(5.3) E′ =
∑

i

(ηi + 1)zi∂zi .

Then from the quasihomogeneity of ti we have E′(ti) = (ηi + 1)ti. The
formula for change of coordinates and the fact that t1 = z1 give the following

(5.4) g1j(t) = ∂zat
1∂zbt

j gab2 (z) = E′(tj) = (ηj + 1)tj .

For the contravariant Levi-Civita connection the change of coordinates has
the following formula

(5.5) Γij
2k(t)dt

k =
(
∂zat

i∂zc∂zbt
jgab2 (z) + ∂zat

i∂zbt
jΓab

2c(z)
)
dzc.

But then we get

Γ1j
2kdt

k =
(
E′(∂zct

j) + ∂zbt
jΓ1b

2c

)
dzc(5.6)

=
(
(ηj − ηc)∂zct

j + ηc∂zct
j
)
dzc = ηj∂zct

jdzc = ηjdt
j

�

We arrive to our basic result
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Theorem 5.3. The flat pencil of metrics on the Slodowy slice Q′ obtained
from the dispersionless limit of Drinfeld-Sokolov bihamiltonian structure on
Q (see proposition 4.5) is regular quasihomogenous of degree κ−1

κ+1 .

Proof. In the notations of definition 2.1 we take τ = 1
κ+1t

1 then

E = gij2 ∂tj τ ∂ti =
1

κ+ 1

∑

i

(ηi + 1)ti∂ti ,(5.7)

e = gij1 ∂tj τ ∂ti = ∂tr .

We see immediately that
[e,E] = e

The identity

(5.8) Le( , )2 = ( , )1

follows from and the fact that ∂tr = ∂zr and proposition 3.7. The fact that

(5.9) Le( , )1 = 0.

is a consequence from the quasihomogeneity of the matrix gij1 (see lemma
3.5). We also obtain from proposition 4.7

(5.10) LE( , )2 = (d− 1)( , )2

since

(5.11) LE( , )2(dt
i, dtj) = E(gij2 )−

ηi + 1

κ+ 1
gij2 −

ηj + 1

κ+ 1
gij2 =

−2

κ+ 1
gij2 .

The (1,1)-tensor

(5.12) Rj
i =

d− 1

2
δji +∇1iE

j =
ηi

κ+ 1
δji .

Hence it is nondegenerate. This complete the proof. �

Now we are ready to prove theorem 1.1.

Proof. [Theorem 1.1] It follows from theorem 5.3 and 2.2 that Q′ has a
Frobenius structure of degree κ−1

κ+1 from the dispersionless limit of Drinfeld-
Sokolov bihamiltonian structure. This Frobenius structure is polynomial
since in the coordinates ti the potential F is constructed from equations

(2.11) and we know from proposition 4.6 that the matrix gij2 is polynomial.
�

5.1. Conclusions and remarks. The results of the present work can be
generalized to some class of distinguished nilpotent elements in simple Lie
algebras. In particular, we notice that the existence of opposite Cartan
subalgebras is the main reason behind the examples of algebraic Frobenius
manifolds constructed in [6] which are associated to distinguished nilpotent
elements in the Lie algebra of type F4. In [6] we discussed how these ex-
amples support Dubrovin conjecture. Our goal is to develop a method to
uniform the construction of all algebraic Frobenius manifolds that could
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be obtained from distinguished nilpotent elements in simple Lie algebras
by performing the generalized Drinfeld-Sokolov reduction. Similar treat-
ment of the present work for algebraic Frobenius manifolds that could be
obtained from subregular nilpotent elements in simple Lie algebras is now
under preparation.
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