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Abstract

We define a new class of solutions to the WDVV associativity equations. This
class is selected by the property that one of the commuting PDEs associated
with such a WDVV solution is linearly degenerate. We reduce the problem of
classification of such linearly degenerate solutions of WDVV to a particular case
of the so-called algebraic Riccati equation and, in this way we arrive at a complete
classification of irreducible solutions.

1 Introduction

E.Witten–R.Dijkgraaf–E.Verlinde–H.Verlinde (WDVV) associativity equations is the
following overdetermined system of partial differential equations for a function F =
F (v), v = (v1, . . . , vn)

∂3F

∂vα∂vβ∂vλ
ηλµ

∂3F

∂vµ∂vγ∂vδ
=

∂3F

∂vδ∂vβ∂vλ
ηλµ

∂3F

∂vµ∂vγ∂vα
, α, β, γ, δ = 1, . . . , n

(1.1)

∂3F

∂vα∂vβ∂v1
= ηαβ.

Here
(ηαβ)1≤α, β≤n and

(
ηαβ
)
1≤α, β≤n
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are constant symmetric nondegenerate matrices that are mutually inverse,

ηαλη
λβ = δβα.

Summation over repeated Greek indices will be assumed within this section.

Recall [5] that solutions to the WDVV associativity equations are in one-to-one
correspondence with n-parametric families of n-dimensional commutative associative
algebras

Av = span(e1, . . . , en)

with a unity e = e1 equipped with a symmetric nondegenerate invariant bilinear form
( , ) such that the structure constants are expressed via the third derivatives of a
function F called potential

eα · eβ = cγαβ(v)eγ, α, β = 1, . . . , n

e1 · eα = eα for any α

(eα, eβ) = ηαβ

(eα · eβ, eγ) = (eα, eβ · eγ) = ηγλc
λ
αβ(v) =

∂3F (v)

∂vα∂vβ∂vγ
.

If in addition the function F satisfies certain quasi-homogeneity condition then one
arrives at the local description of Frobenius manifolds (see details in [5]). A natural
metric

ds2 = ηαβdv
αdvβ (1.2)

(not necessarily positive definite) is defined on these manifolds. The variables v1, . . . ,
vn are flat coordinates for this metric. The algebra Av is identified with the tangent
space to the manifold at the point v,

eα ↔
∂

∂vα
.

See [5] for more details about the coordinate-free geometric description of Frobenius
manifolds.

A solution to the associativity equations (1.1) is called semisimple if the algebra
Av has no nilpotent elements for a generic point v. In the semisimple case it was
proved [4] existence of local canonical coordinates ui = ui(v), i = 1, . . . , n such that
the multiplication table takes the following standard form

∂

∂ui
· ∂

∂uj
= δij

∂

∂ui
.

The metric (1.2) becomes diagonal in the canonical coordinates

ds2 =
n∑
i=1

h2i (u)du2i . (1.3)

2



Moreover, this is a Egorov metric, i.e., the rotation coefficients

γij(u) =
1

hj

∂hi
∂uj

(1.4)

are symmetric in i, j
γji = γij. (1.5)

They satisfy the following system of Darboux–Egorov equations

∂γij
∂uk

= γikγkj, i, j, k distinct (1.6)

n∑
k=1

∂γij
∂uk

= 0, i 6= j. (1.7)

Any solution to the Darboux–Egorov equations comes from a semisimple solution to
the WDVV associativity equations. The reconstruction procedure of the latter involves
solutions to the following system of linear differential equations for a vector-function
ψ = (ψ1(u), . . . , ψn(u))

∂ψi
∂uj

= γijψj, i 6= j (1.8)

n∑
k=1

∂ψ

∂uk
= 0. (1.9)

Denote ψiα = ψiα(u), α = 1, . . . , n a system of n linearly independent solutions to
(1.8), (1.9). The reconstruction depends on a choice of one of these solutions to be
identified with the Lamé coefficients of the invariant metric (1.2); let it correspond to
α = 1

hi = ψi1.

Then

ηαβ =
n∑
i=1

ψiαψiβ

dvα =
n∑
i=1

ψiαψi1dui

∂3F

∂vα∂vβ∂vγ
=

n∑
i=1

ψiαψiβψiγ
ψi1

.

Observe also the following formula for the differentials of the second derivatives

Ωαβ =
∂2F

∂vα∂vβ
(1.10)
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of the potential F

dΩαβ =
n∑
i=1

ψiαψiβdui. (1.11)

As it was found in [3] the Darboux–Egorov system (1.6)–(1.7) can be identified
with a particular reduction of the well-known in the theory of integrable PDEs n-
wave system written in the form suggested in [2]. It can also be embedded into the
framework of the nKP system (see, e.g., [10]). All known particular solutions to the
associativity equations correspond to further reduction from the n-wave system to a
system of ODEs. For example the semisimple Frobenius manifolds come out from the
scaling reduction

n∑
k=1

uk
∂γij
∂uk

= −γij, i 6= j.

It corresponds to the quasi-homogeneity axiom of the theory of Frobenius manifolds
[4], [5]. Other particular classes of solutions (solitons, algebro-geometric solutions,
degenerate Frobenius manifolds) also naturally arise in the framework of the n-wave
system.

In this paper we introduce another class of solutions to WDVV. In order to describe
this class let us first recall the connection between the associativity equations and
integrable hierarchies. Let θ = θ(v) be a solution to the following system of linear
differential equations

∂2θ

∂vα∂vβ
= cγαβ

∂2θ

∂v1∂vγ
, α, β = 1, . . . , n. (1.12)

Consider a system of linear PDEs for the vector-function v = v(x, t)

vt = [∇θ(v)]x. (1.13)

It is a Hamiltonian PDE with the Hamiltonian

H =

∫
θ(v) dx

and the Poisson bracket

{vα(x), vβ(y)} = ηαβδ′(x− y).

All these Hamiltonian systems of the form (1.12), (1.13) commute pairwise. Moreover
the Hamiltonians (1.12) satisfy certain completeness conditions. So any of the systems
(1.13) can be considered as a completely integrable Hamiltonian PDE.

In the semisimple case all such PDEs diagonalize in the canonical coordinates

ut = Λ(u)ux, Λ(u) = diag (λ1(u), . . . , λn(u)) . (1.14)
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Thus the canonical coordinates are Riemann invariants for the quasilinear systems
(1.13). For a generic solution to (1.12) the characteristic velocities are pairwise distinct

λi(u) 6= λj(u), i 6= j (1.15)

for a generic point u.

Definition 1.1 The semisimple solution F (v) to the WDVV associativity equations is
called linearly degenerate if among the commuting PDEs (1.12)–(1.14) there exists at
least one satisfying (1.15) along with the condition

∂λi(u)

∂ui
= 0, i = 1, . . . , n. (1.16)

The motivation for our terminology is that one of the quasilinear systems of the
commuting family (1.12)–(1.14) is linearly degenerate, i.e., the i-th characteristic ve-
locity λi does not depend on the i-th Riemann invariant ui for every i from i = 1 to
i = n.

The main goal of the present paper is to classify linearly degenerate solutions to
the WDVV associativity equations. Such a solution is called reducible if, for some i
one has

γij(u) ≡ 0 ∀ j 6= i.

In the opposite case it will be called irreducible. It suffices to classify irreducible linearly
degenerate solutions.

Theorem 1.2 The rotation coefficients of an irreducible linearly degenerate solution
to the WDVV associativity equation has the form

γij(u) =

[
G(1− 1

ρ
tanh ρU ·G)−1

]
ij

cosh ρui cosh ρuj
, i, j = 1, . . . , n, i 6= j

(1.17)

U = diag(u1, . . . , un)

where G is a symmetric matrix satisfying

G2 = ρ2 · 1, (1.18)

ρ is an arbitrary complex parameter.

For ρ = 0 the above formulae are considered in the sense of a limit

1

ρ
tanh ρU → U, cosh ρui → 1.
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The paper is organized as follows. In Section 2 we recall the necessary constructions
of the theory of the WDVV associativity equations. We derive the main system of
differential equations (2.8) of the theory of linearly degenerate solutions to WDVV.
In Section 3 we solve the main system and describe a symmetry group of it acting by
fractional linear transformations. In Section 4 we select those solutions to the main
system that give rise to WDVV and derive the algebraic Riccati equation. Using the
symmetries of this equation we classify all irreducible linearly degenerate solutions to
the WDVV associativity equations.
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2 Linearly degenerate solutions to the WDVV as-

sociativity equations

Let
Γ = (γij(u))1≤i, j≤n

be the symmetric matrix of rotation coefficients1 (1.4) of a linearly degenerate irre-
ducible solution to the associativity equations.

Lemma 2.1 The matrix valued function Γ = Γ(u) satisfies the following differential
equations

∂Γ

∂uk
= ΓEkΓ + σk(uk)Ek, k = 1, . . . , n (2.1)

with some functions σ1(u1), . . . , σn(un). Here Ek is the matrix with only one nonzero
entry

(Ek)ij = δikδjk. (2.2)

1Actually, in the differential geometry of curvilinear orthogonal coordinate systems only the off-
diagonal entries of the matrix Γ are called rotation coefficients. However, in our case it will be
convenient to also add the diagonal entries γii = ∂ log hi/∂ui.
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Proof By construction the equations

∂γij
∂uk

= γikγkj (2.3)

hold true for distinct values of the indices i, j, k. Let us first establish validity of (2.3)
also for k = i or k = j with i 6= j or for i = j but k 6= i.

According to [4] the characteristic velocities λk(u) of the commuting PDEs (1.12)–
(1.14) can be represented in the form

λk(u) =
φk(u)

hk(u)
, k = 1, . . . , n (2.4)

where the vector-function φ = (φ1(u), . . . φn(u)) satisfies the system of linear differen-
tial equations

∂φi
∂uj

= γijφj, i 6= j. (2.5)

In particular φk = hk is one of solutions to (2.5). Let φ be the solution to (2.5)
corresponding to the linearly degenerate member of the commuting family (1.12)–
(1.14). Differentiating the equation

∂

∂uk

(
φk
hk

)
= 0

in ui with i 6= k one derives the following equation

hi
hk

(λi − λk)γik
∂

∂uk
[log γik − log hk] = 0.

Due to the assumptions of irreducibility and (1.15) we arrive at the equation

∂ log γik
∂uk

=
∂ log hk
∂uk

= γkk.

This proves (2.3) for k = j, i 6= j. Next, assuming k 6= i one has

∂γii
∂uk

=
∂

∂ui

∂ log hi
∂uk

=
∂

∂ui

(
γik

hk
hi

)
= γ2ik.

Thus the equation (2.3) with i = j and k 6= i is also fixed. The last step is to verify
that the difference σi := ∂γii/∂ui − γ2ii depends only on ui. Indeed, for k 6= i

∂

∂uk

(
∂γii
∂ui
− γ2ii

)
=

∂

∂ui

∂γii
∂uk
− 2γiiγ

2
ik =

∂γ2ik
∂ui
− 2γiiγ

2
ik = 0.

Let us now describe a class of transformations

uk 7→ ũk, γij 7→ γ̃ij

leaving invariant the system (2.1).
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Lemma 2.2 The substitution

ũk = fk(uk), k = 1, . . . , n

(2.6)

γ̃ij =
γij√

f ′i(ui)f
′
j(uj)

− f ′′i (ui)

2[f ′i(ui)]
2
δij, i, j = 1, . . . , n

with arbitrary nonconstant smooth functions f1(u1), . . . , fn(un) leaves invariant the
form of equations (2.1)

∂Γ̃

∂ũk
= Γ̃EkΓ̃ + σ̃k(ũk)Ek, k = 1, . . . , n.

with

f ′k
2
σ̃k = σk −

1

2
Suk (fk) . (2.7)

Here Su(f) is the Schwarzian derivative of a function f = f(u)

Su(f) =
f ′′′

f ′
− 3

2

f ′′2

f ′2
.

Proof is given by a straightforward computation.

Corollary 2.3 The system (2.1) by a suitable transformation of the form (2.6) can be
reduced to the form

∂Γ̃

∂ũk
= Γ̃EkΓ̃, k = 1, . . . , n. (2.8)

Proof The needed transformation ũk = fk(uk) is determined from the Schwarzian
equations

Suk(fk) = 2σk(uk), k = 1, . . . , n.

Recall that the solution to the general Schwarzian equation Su(f(u)) = 2σ(u) is
represented as the ratio of two solutions to the linear second order equation

y′′ + σ(u)y = 0.

Remark 2.4 The system (2.8) appeared [8] in the investigation of the so-called cold
gas reductions of the nonlocal kinetic equation derived as the thermodynamical limit of
the averaged multi-phase solutions of the KdV equation by the Whitham approach.

In the next section we will solve the system (2.8).
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3 Main system

In this section we will describe solutions to the main system

∂Γ

∂uk
= ΓEkΓ, k = 1, . . . , n. (3.1)

Here
Γ = (γij(u))1≤i,j≤n (3.2)

is a symmetric matrix (the tildes of the previous section have been omitted now). The
compatibility conditions

∂

∂ul

∂Γ

∂uk
=

∂

∂uk

∂Γ

∂ul
(3.3)

for any k, l can be readily verified. So, locally, any solution to (3.1) is uniquely
determined by the initial data

Γ0 = Γ(u0). (3.4)

Here u0 is any point in the space of independent variables. Therefore the space of
solutions to the system (3.1) has dimension n(n+ 1)/2.

Without loss of generality one can assume u0 = 0. The solution to the system (3.1)
with a given initial data at the point u = 0 can be written explicitly.

Proposition 3.1 The solution Γ = Γ(u) to the main system (3.1) with the initial data

Γ(0) = G (3.5)

with a given symmetric matrix G = (gij) is given by the following formula

Γ = G (1− UG)−1 (3.6)

where 1 is the n× n identity matrix,

U = diag (u1, . . . , un) .

Proof Symmetry of the matrix (3.6) is tantamount to the equality

G (1− UG)−1 = (1−GU)−1G. (3.7)

To prove the latter we multiply it by (1−GU) on the left and by (1− UG) on the
right to arrive at an obvious identity

(1−GU)G = G (1− UG) = G−GUG.

Clearly Γ(0) = G. Applying the well known rule of differentiating of the inverse matrix

∂Γ

∂uk
= −G (1− UG)−1

∂ (1− UG)

∂uk
(1− UG)−1

= G (1− UG)−1EkG (1− UG)−1 = ΓEkΓ

one completes the proof of the Proposition.
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Example 3.2 For the matrix of rank 1, gij = ωiωj one obtains the following solution
to the main system

γij =
ωiωj

1−
∑n

k=1 ω
2
kuk

. (3.8)

Let us now describe a subclass of the transformations (2.6) leaving invariant the
main system (3.1).

Proposition 3.3 The main system (3.1) is invariant with respect to the transforma-
tions (2.6) iff fk(uk) for every k = 1, . . . , n is a fractional linear transformation

fk(uk) =
akuk + bk
ckuk + dk

, akdk − bkck = 1. (3.9)

Proof It is well known that the general solution to the homogeneous Schwarzian equa-
tion

f ′′′

f ′
− 3

2

f ′′2

f ′2
= 0.

is given by fractional linear functions.

Corollary 3.4 The main system (3.1) is invariant with respect to the transformations

ũk =
akuk + bk
ckuk + dk

,

(
ak bk
ck dk

)
∈ SL2(R), k = 1, . . . , n

(3.10)

γ̃ij = (ciui + di)(cjuj + dj)γij + ci(ciui + di)δij, i, j = 1, . . . , n.

Observe the matrix version of the transformation (3.10)

Ũ = (AU +B) (C U +D)−1 , Γ̃ = (C U +D) Γ(C U +D) + C(C U +D)

(3.11)

A = diag(a1, . . . , an), B = diag(b1, . . . , bn), C = diag(c1, . . . , cn), D = diag(d1, . . . , dn)

AD −BC = 1.

Example 3.5 The substitution

ũk = ω2
kuk, γ̃ij =

γij
ωiωj

reduces the solution (3.8) to the standard form

γ̃ij =
1

1−
∑n

k=1 ũk
, i, j = 1, . . . , n. (3.12)
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The action of [SL2(R)]n transformations (3.10) on the solutions (3.6) is given by
the following analogue of Siegel modular transformations.

Proposition 3.6 Let the symmetric matrix G satisfy the condition

det(A+BG) 6= 0.

Then the transformation (3.10) transforms the solution Γ(u) with the initial data
Γ(0) = G to

Γ̃ = G̃
(

1− ŨG̃
)−1

with
G̃ = (C +DG)(A+BG)−1. (3.13)

Proof An easy calculation with the help of (3.11) yields

Γ̃ =
(
−C Ũ + A

)−1
G
[
A+BG− Ũ (C +DG)

]−1
+ C

(
−C Ũ + A

)−1
.

Computing the initial data of this solution at ũ = 0 we arrive at Γ̃(0) = G̃ with the
matrix G̃ given by the formula (3.13).

Definition 3.7 Two solutions Γ and Γ̃ to the main system are called equivalent if
they are related by a symmetry transformation (3.11). Two symmetric matrices G and
G̃ related by the transformation (3.13) will also be called equivalent.

Observe a useful identity

(C +DG)(A+BG)−1 = (A+GB)−1(C +GD) (3.14)

equivalent to the symmetry of the matrix G.

4 From the main system back to linearly degener-

ate solutions to the associativity equations

In this section we will address the problem of selection of those solutions to the main
system (3.1) that come from a linearly degenerate solution to the associativity equa-
tions.

For a given symmetric matrix valued function Γ(u) satisfying (3.1) we are looking
for a substitution of the form (2.6) such that the transformed matrix Γ̃ satisfies also
the last equation (1.7) of the Darboux–Egorov system, that is

n∑
k=1

∂Γ̃

∂ũk
= a diagonal matrix. (4.1)
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Recall that validity of the first part

∂γ̃ij
∂ũk

= γ̃ikγ̃kj for i, j, k distinct

follows from the main system, due to the Lemma 2.2.

Applying the Lemma 2.2 we arrive at the following simple statement.

Proposition 4.1 Let Γ(u) be a solution to the main system (3.1). Suppose that the
functions f1(u1), . . . , fn(un) are chosen in such a way that the transformed matrix
(2.6) satisfies (4.1). Then the off-diagonal entries of the transformed matrix Γ̃ are
rotation coefficients of some Egorov metric.

Introduce the diagonal matrices

S = diag (s1, . . . , sn) , si =
1

f ′i
(4.2)

S ′ = diag (s′1, . . . , s
′
n) , s′i =

dsi
dui

= − f ′′i
[f ′i ]

2
.

Here and in sequel we will use short notations

f ′i = f ′i(ui), f ′′i = f ′′i (ui) etc.

In these notations the transformation law (2.6) reads

Γ̃ = S1/2ΓS1/2 +
1

2
S ′. (4.3)

Thus the condition (4.1) can be represented in the form

ΓSΓ +
1

2
S ′Γ +

1

2
ΓS ′ + P = 0 (4.4)

for some diagonal matrix P .

Definition 4.2 The solution Γ is called reducible if, for some i one has

γij ≡ 0 for any j 6= i.

Otherwise it is called irreducible.

A reducible solution essentially depends on a smaller number of variables.
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Theorem 4.3 For an irreducible solution

Γ = G(1− UG)−1 = (1−GU)−1G

a transformation (2.6) satisfying (4.1) exists iff the matrix G satisfies the quadratic
equation

GRG+QG+GQ+ P = 0 (4.5)

for some constant diagonal matrices

P = diag(p1, . . . , pn), Q = diag(q1, . . . , qn), R = diag(r1, . . . , rn). (4.6)

The transformation in question is determined by

dũi
dui

=
1

piu2i + 2qiui + ri
, i = 1, . . . , n. (4.7)

Proof Differentiating (4.4) in ui with the help of (3.1) and using the obvious formulae

∂S

∂ui
= s′iEi,

∂S ′

∂ui
= s′′iEi

etc. one obtains (
1

2
s′′i − pi

)
(ΓEi + EiΓ) +

∂P

∂ui
= 0. (4.8)

All the entries of the matrix ΓEi +EiΓ vanish except for the i-th row and i-th column
coinciding with (γ1i, . . . , γni). Due to the irreducibility assumption from (4.8) it follows
that

pi =
1

2
s′′i . (4.9)

Substituting again into (4.8) yields

∂P

∂ui
= 0.

Repeating this procedure for every i = 1, . . . , n one proves that the matrix P is con-
stant. Using (4.9) we conclude that si = si(ui) is a quadratic polynomial, si =
piu

2
i + 2qiui + ri. Finally, multiplying eq. (4.4) on the left by 1 − GU and on the

right by 1− UG we arrive at the quadratic equation (4.5).

Definition 4.4 A symmetric matrix G is called admissible if it satisfies the matrix
quadratic equation (4.5). The solution Γ = G(1 − UG)−1 is called admissible if the
parameter matrix G is admissible.

The matrix quadratic equation (4.5) for the symmetric matrix G is a particular case
of the so-called algebraic Riccati equation (see, e.g., [9]). The class of such equations
is invariant with respect to fractional linear transformations, as it follows from
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Lemma 4.5 If the symmetric matrix G satisfies a matrix quadratic equation

GRG+QG+GQ+ P = 0

with some diagonal matrices P , Q, R then so does the equivalent matrix G̃ = (C +
DG)(A+BG)−1

G̃R̃G̃+ Q̃G̃+ G̃Q̃+ P̃ = 0

with

P̃ = D2P − 2CDQ+ C2R

Q̃ = −BDP + (AD +BC)Q− ACR (4.10)

R̃ = B2P − 2ABQ+ A2R.

Proof is straightforward with the help of the identity (3.14).

Corollary 4.6 The class of admissible solutions to the main system (3.1) is invariant
with respect to the [SL2]

n action (3.11).

The entries ∆1, . . . , ∆n of the diagonal matrix

∆ = Q2 − PR (4.11)

are invariants of the [SL2]
n action (4.10).

The next step is to parameterize linearly degenerate solutions to the associativity
equations by solutions to the algebraic Riccati equation (4.5) with prescribed coeffi-
cients satisfying

|pi|2 + |qi|2 + |ri|2 6= 0, i = 1, . . . , n. (4.12)

Let us first simplify the matrix quadratic equation with the help of the transformations
(4.10).

Lemma 4.7 1) For an irreducible admissible matrix G the matrix quadratic equation
(4.5) is equivalent, up to transformations (4.10) to

G2 = ∆ (4.13)

where ∆ is given by (4.11).

2) For an admissible irreducible G the matrix ∆ is proportional to the identity
matrix

∆1 = · · · = ∆n =: ρ2. (4.14)
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Proof If all entries of the matrix R are different from zero then the equation (4.5) can
be reduced to the canonical form (4.13) by a transformation

G 7→ AGA+B

with suitable diagonal matrices A and B. This is a particular class of transformation
(4.10). If ri = 0 for some i then one can assume that pi 6= 0. Let us apply the
transformation of the form (3.13) with

A = 1− Ei, B = −Ei, C = Ei, D = 1− Ei

G 7→ G̃ = [1 + Ei(1−G)] [1− Ei(1 +G)]−1

where the matrix Ei is of the form (2.2). Such a transformation is applicable only if
the matrix

1− Ei(1 +G)

does not degenerate. It is easy to see that the determinant of this matrix is equal to
±gii = γii(0). If gii = 0 but the solution is irreducible then one can perform a shift
u 7→ u + u0 arriving at a matrix G′ = Γ (u0) with g′ii 6= 0. After the transformation
one obtains r̃i = pi 6= 0.

In order to prove the second part of the Lemma it suffices to observe that any
eigenvector f of the matrix G with the eigenvalue λ is also an eigenvector of G2 with
the eigenvalue λ2. So, if ei and ej are the i-th and j-th basic vectors and ∆i 6= ∆j then
these vectors belong respectively to the sum of the root subspaces R(

√
∆i)⊕R(−

√
∆i)

and R(
√

∆j) ⊕ R(−
√

∆j) of the matrix G. As these root subspaces of a symmetric
matrix are orthogonal, the matrix G must have a block-diagonal form in the same
basis.

The Main Theorem 1.2 readily follows from the above considerations.

Recall that the reconstruction of the solution to the associativity equations with
given rotation coefficients (1.17) depends on the choice of a solution to the linear system
(1.8), (1.9). We will now apply this procedure in order to produce examples of linearly
degenerate solutions to WDVV. It is convenient to separately consider the cases ρ 6= 0
and ρ = 0.

Case 1. Eigenvalues of a symmetric matrix G satisfying G2 = ρ2 · 1 are equal to
±ρ. Denote k the number of eigenvalues equal to −ρ. Here we will consider in more
details the case k = 1. It is more convenient to deal with the matrix

G̃ = G− ρ · 1

satisfying
G̃2 + 2ρG̃ = 0.

For the case k = 1 this matrix can be represented in the form

G̃ = (ωiωj) ,
n∑
i=1

ω2
i = −2ρ.
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In this way we obtain the family of solutions of the form (3.8). The substitution

ũk = − log
[
ω2
k(uk − u0k)

]
, k = 1, . . . , n

with arbitrary constants u0k satisfying

n∑
k=1

u0k = 0

yields the following rotation coefficients satisfying Darboux–Egorov equations

γ̃ij =
e−

ũi+ũj
2∑n

k=1 e
−ũk

, i 6= j. (4.15)

In sequel we will omit all tildes. The system (1.8)–(1.9) can be easily solved:

ψii =
2e−ui

D
− 1, D =

n∑
k=1

e−uk

(4.16)

ψij =
2e−

ui+uj
2

D
, i 6= j.

Computation of the quadratures (1.11) gives the following expression for the matrix Ω
of the second derivatives of the potential (see (1.10))

Ωij = uiδij +
4e−

ui+uj
2

D
. (4.17)

Flat coordinates are obtained by choosing a linear combination of the columns of
this matrix. The choice of the first column yields a Egorov metric

ds2 =

(
1− 4

e−u1

D

)
du21 + 4

n∑
i=1

e−u1−ui

D2
du2i

with the flat coordinates

v1 = u1 +
4e−u1

D
, vi =

4e−
u1+ui

2

D
for i 6= 1

Solving these equations for the canonical coordinates ui

u1 = v1 −
√

4− σ − 2, ui = v1 −
√

4− σ − 2 + 2 log
2 +
√

4− σ
vi

for i 6= 1

with

σ =
n∑
k=2

v2k

16



and integrating the quadratures (4.17) one arrives at the following expression for the
potential of the corresponding linearly degenerate solution to the WDVV associativity
equations

F =
1

6
v31 +

1

2
v1σ −

n∑
k=2

v2k log vk −
1

3
(2 + σ)

√
4− σ + σ log(2 +

√
4− σ). (4.18)

One can also obtain an explicit realization of the integrable hierarchy associated, in
the sense of [4], with (4.18). Recall that the hierarchy consists of an infinite family of
commuting flows labeled by pairs (α, p), α = 1, . . . , n, p = 0, 1, 2, . . . . The flows read

∂vγ

∂tα,p
= ∂x (∇γθα,p+1(v)) . (4.19)

The generating functions

θα(v, z) =
∞∑
p=0

θα,p(v)zp

of θα,p(v) (the deformed flat coordinates) can be found by quadratures

dθα(v, z) =
n∑
i=1

hiΨi αdui, α = 1, . . . , n (4.20)

from a basis Ψi α(v, z), α = 1, . . . , n of “wave functions” determined from the system

∂Ψi

∂uj
= γijΨj, i 6= j

n∑
k=1

∂Ψi

∂uk
= zΨi

The basis Ψiα can be conveniently normalized by the conditions

n∑
α=1

Ψiα(v,−z)Ψjα(v, z) = δij. (4.21)

In our case the normalized wave functions read

Ψiα =
2ez uα√
1− 4z2

[(
z − 1

2

)
δiα +

e−
ui+uα

2

D

]
. (4.22)

That gives

θα =
1√

1− 4z2

{[
1

z
(ez u1 − 1)− ez u1(u1 + 2) + 2

]
δα 1 + vαe

z uα

}
, α = 1, . . . , n.

(4.23)
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Case 2. We will now consider the second type solutions parametrized by symmetric
matrices G satisfying G2 = 0. In this case one obtains a solution to the WDVV
equations also satisfying the quasihomogeneity condition.

All the eigenvalues of G are equal to 0. All the Jordan blocks are of order 1 or 2.
Let us consider the simplest case of only one block of order 2. The matrix G = (gij)
can be written in the form

Gij = ωiωj,

n∑
i=1

ω2
i = 0

The corresponding solution to WDVV can be obtained from the trivial (i.e., the cubic
one)

F (v) =
1

6

∑
i,j,k

cijkv
ivjvk (4.24)

by the inversion symmetry of [5] (see esp. Appendix B and Proposition 3.14). Here
cijk are structure constants of a semisimple Frobenius algebra

A = span (e1, . . . , en), 〈ei · ej, ek〉 = cijk, 〈ei, ej〉 = δi+j,n+1 (4.25)

with the unity e1 and the trivial gradation deg ei = 0 for all i. Recall that the structure
constants can be represented in the form

cijk =
n∑
s=1

asiasjask
as1

(4.26)

with a matrix (aij) satisfying

n∑
s=1

asiasj = δi+j,n+1. (4.27)

For our construction one has to choose the matrix in such a way that

ai1 = ωi, i = 1, . . . , n.

After the substitution

v̂1 =
1

2

vαv
α

vn

v̂α =
vα

vn
, α 6= 1, n

v̂n = − 1

vn

one obtains the needed solution F̂ to WDVV in the form

F̂ (v̂) =
1

2
v̂1v̂αv̂

α+(v̂n)2 F (v) =
1

2
(v̂1)2v̂n+

1

2

n−1∑
α=2

v̂1v̂αv̂n−α+1+
P (v̂2, . . . , v̂n−1)

v̂n
. (4.28)
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Here2 P (v̂2, . . . , v̂n−1) is certain polynomial of degree 4. The potential F̂ satisfies the
quasihomogeneity condition

Ê F̂ = F̂ , Ê = v̂1
∂

∂v̂1
− v̂n ∂

∂v̂n
. (4.29)
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