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Efficient computation of the branching structure of an
algebraic curve

J. Frauendiener, C. Klein, and V. Shramchenko

Abstract. An efficient algorithm for computing the branching structure of a
compact Riemann surface defined via an algebraic curve is presented. Gener-
ators of the fundamental group of the base of the ramified covering punctured
at the discriminant points of the curve are constructed via a minimal span-
ning tree of the discriminant points. This leads to paths of minimal length
between the points, which is important for a later stage where these paths are
used as integration contours to compute periods of the surface. The branching
structure of the surface is obtained by analytically continuing the roots of the
equation defining the algebraic curve along the constructed generators of the
fundamental group.

Keywords. Riemann surfaces, algebraic curves, monodromies, fundamental
group.
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1. Introduction

Riemann surfaces have many applications in natural sciences and engineering,
for instance in the solutions of certain integrable partial differential equations
(PDE) appearing in hydrodynamics and optics, see e.g. [2]. For a long time the
full potential of related techniques could not be realized due to the absence of
efficient numerical approaches. In [5], the Maple package algcurves (starting with
Maple 7) for algebraic curves which gives a mixed symbolic-numeric approach
was published, see also [6]. Since all compact Riemann surfaces can be defined via
non-singular plane algebraic curves (see e.g. [16]), all quantities characterizing a
Riemann surface can in principle be computed along these lines. For a different
numerical approach to Riemann surfaces based on Schottky uniformizations see
[3, 15].
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Though being very useful, the mixed symbolic-numeric approach has the dis-
advantage that only algebraic curves with exact arithmetic coefficients, i.e., not
floating point coefficients can be used, and that the performance of the numerics
is consequently reduced in addition to the limitations imposed by the restriction
to exact arithmetic expressions. Thus a fully numeric approach was presented
in [7, 8] for real hyperelliptic curves and in [9] for general algebraic curves. The
gain in performance and in flexibility allows the study of higher genus curves
and of families of curves, i.e., of the modular properties of Riemann surfaces.
Such modular dependences are important for instance in the study of solutions
to certain integrable PDE appearing in the context of gravity and surface theory
[12] and the description of the asymptotic behavior of highly oscillatory regimes
in dispersive PDE [13, 10] as well as the study of modular invariants discussed
in topological field theories, see for instance [14, 11].

A plane algebraic curve C is defined as a subset in C2, C = {(x, y) ∈ C2|f(x, y) =
0}, where f(x, y) is an irreducible polynomial in x and y,

(1) f(x, y) =
M∑
i=1

N∑
j=1

aijx
iyj =

N∑
j=1

aj(x)yj = 0 .

We assume that not all aiN vanish and that N is thus the degree of the polynomial
in y. At a generic point x there are N distinct roots y(k), k = 1, . . . , N , which
implies that the algebraic curve defines an N -sheeted ramified covering of the
x-plane. The surface is then compactified in a standard way (see for example
[1]) so that we have a ramified covering of the x-sphere CP1. At a point where
both f(x, y) = 0 and fy(x, y) = 0, the number of distinct roots y(k) is lower than
N , i.e., this branch point belongs to several sheets of the covering. To describe
the associated Riemann surface, one has to be able to identify the branching
structure of the curve at the branch points, in other words, one has to specify
which sheets of the covering are connected in which way at a given branch point.
This is equivalent to identifying the monodromy of the surface. It is the purpose
of this paper to give an efficient algorithm for this crucial step in the numerical
treatment of Riemann surfaces. The structure of the Riemann surface obviously
does not depend on whether the algebraic curve (1) is studied as a covering of
the x- or of the y-sphere. We will concentrate here on the covering of the x-
sphere since this covering appears as the input data in many applications such
as algebro-geometric solutions to certain integrable equations. Notice that the
inverse problem, to find the equation of an algebraic curve for a given monodromy,
is very involved and could so far be only addressed for low genus, see e.g. [4] and
references therein.

The points on an algebraic curve (1) with f(x, y) = fy(x, y) = 0 can be computed
in a standard way as the zeros of the discriminant or resultant of f(x, y) and
fy(x, y), see e.g. [6, 9] and references therein. Their projections to the x-sphere
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CP1, the base of the covering, are called the discriminant points1 b1, . . . , bn and
are assumed in this paper to be given. The task is thus to construct generators
{γk}nk=1 of the fundamental group π1(CP1\{b1, . . . , bn}). This means to construct
a set of closed contours γ1, . . . , γn, all starting at a (finite) common base point b0
not being a discriminant point, each of the γk encircling exactly one discriminant
point bk in positive direction and being disjoint from other γj everywhere apart
from the base point as shown in Fig. 1. To take into account a branching of
the surface at the point at infinity, a contour γ∞ starting and ending at b0 and
encircling all finite discriminant points in negative direction is used. We need
the contours γk to satisfy the relation

(2) γ1γ2 . . . γnγ∞ = id.

1

2

n-1

n

Υ1
Υ2

Υn-1

Υn

Υ∞

Figure 1. Generators of the fundamental group of C \ {b1, . . . , bn}.

In [9], the generators {γk} were constructed in the same way as in the Maple
package algcurves ; here we briefly describe this approach. For numerical reasons
it is important to stay away as much as possible from the discriminant points.
Therefore we draw small disjoint circles centered at the discriminant points, with
diameters strictly smaller than the minimal distance between the discriminant
points. Each circle contains two marked points, the intersections of the circle
with a straight line through the discriminant point parallel to the real axis. The

left and right marked points are denoted by b
(1)
k and b

(2)
k , respectively. One of

1An algebraic curve of the form (1) can have singularities, i.e., points where in addition to
f(x, y) and fy(x, y) also fx(x, y) vanishes. Such points as e.g. double points can have trivial
monodromies, but are included in the monodromy computation. The notion of discriminant
points thus includes branch points and singular points. Note that an algebraic curve has to be
desingularized to define a Riemann surface, a process not to be discussed here (see for instance
[6, 9] and references therein).
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the leftmost marked points is denoted by b0 and chosen to be the base point for
π1(CP1 \ {b1, . . . , bn}). Starting from this base point straight lines are drawn to
the marked points around each of the finite discriminant points. The contours γk
are formed by these straight lines and the circles around the discriminant points.

This procedure is best illustrated by an example. Consider the curve given by
f(x, y) = y3 − 2x3y − x9 = 0. One quickly checks that the discriminant points
are given by the roots of x9 = 25/33 and the singular point x = 0. The resulting
pattern can be seen in Fig. 2. In this example the contour γ7 is just the positively
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Figure 2. Contours for the monodromy computation for the
curve f(x, y) = y3 − 2x3y − x9 = 0 obtained via the deformation
approach. The base point is marked with a small square.

oriented circle around the point b7 marked with 7 starting and ending at the base
point indicated with a small square. Similarly the contour γ1 is formed by the

line segment from the base point to b
(1)
1 , the positively oriented full circle around

b1 and the straight line back to b0. Drawing a straight line from b0 to one of
the marked points near b10 would lead to a line coming too close to b7. The

easiest way to remedy this is to consider the straight line between b
(2)
7 and b

(1)
10

instead. The contour γ10 thus consists of the upper half circle between b
(1)
7 and

b
(2)
7 , the line between b

(2)
7 and b

(1)
10 and the circle around b10. It can happen that

the distance between a line from b0 to a point b
(j)
k and another discriminant point

bi is smaller than some prescribed minimal distance δ, as would be the case for

the line from b
(2)
7 to b

(1)
6 and b5. In this case the contour is deformed as follows:

instead of this line one considers the line between b
(2)
7 and b

(1)
5 , the upper half

circle around b5 and the line between b
(2)
5 and b

(1)
6 .
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Thus if a connecting line comes closer than the distance δ to another discriminant

point bi, it is replaced by lines to and from the b
(j)
i and a half circle around

bj. Since it is well possible that the new lines come also too close to other
discriminant points, this procedure has to be iterated. A proof that the algorithm
terminates has not been given (though such a proof should be possible given the
finite number of problem points). More importantly, the resulting connecting
lines will in general not be numerically optimal in the sense that they will not
have the shortest possible lengths as is obvious from Fig. 2.

It is the purpose of this paper to address the outlined problems. Instead of
deforming the connecting paths, we construct a minimal spanning tree having
vertices at the discriminant points starting with the bk closest to the base point.
By construction, edges of this tree will have minimal lengths. The contours
γk are then built as before from line segments between the marked points near
discriminant points as they appear on the tree and the half circles. The result
of this procedure for the same curve as in Fig. 2 can be seen in Fig. 3. The tree
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Figure 3. Contours for the monodromy computation for the
curve f(x, y) = y3 − 2x3y − x9 = 0 obtained via the minimal
spanning tree. The base point is marked with a small square.

defines an initial set of contours γ̃k, k = 1, . . . , n which are numerically optimal,
but which do not yet satisfy condition (2). In a second step, the γ̃k will be
combined in a way to form a new set of contours γk, k = 1, . . . , n which satisfy
condition (2).

The paper is organized as follows: In section 2 we describe the construction of the
minimal spanning tree and the contours γ̃k as well as the analytic continuation
of the roots y(k)(b0), k = 1, . . . , N along the contours. In section 3 the found
contours are combined in a way that they satisfy condition (2). In section 4
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we compare the actual numerical performance of the two approaches for some
examples.

2. Contours for integration and minimal spanning tree

In this section we will explain how to construct the contours which generate the
fundamental group of CP1 minus the finite discriminant points. These contours
will be built from a minimal spanning tree, and the roots y(k), k = 1, . . . , N of
(1) will be analytically continued along them. The contours will not in general
satisfy condition (2) which will be enforced in the next section.

We assume the finite discriminant points bi, i = 1, . . . , n to be given. Let ρ be
the minimal distance between any two of these points,

ρ := min
i,j=1,...,n

i 6=j

(|bi − bj|) .

For numerical reasons, one has to assume that ρ is considerably larger than the
rounding error (in Matlab with double precision this error is typically of the order
10−14). In practice, ρ has to be much larger for the reasons discussed below, see
Remark 1. The code issues a warning if the ratio of the smallest distance to the
largest distance between any two discriminant points is smaller than 10−4, but
will typically produce correct results in such cases. The code performs several
checks to ensure that the obtained results are correct.

The starting configuration is as follows. Small disjoint circles centered at the
discriminant points are drawn, with radius R = κρ and κ < 1/2. In Figs. 2 and
3 we chose κ = 1/2.9 for plotting purposes, for the later computations values of up
to κ = 1/2.1 are taken2. Each circle contains two marked points, the intersection
of the circle with a straight line through the discriminant point parallel to the

real axis. The marked points on the circle around bk are denoted by b
(1)
k and b

(2)
k ,

where Re
{
b
(1)
k

}
< Re

{
b
(2)
k

}
. One of the leftmost marked points is chosen to be

the base point b0 for π1(CP1 \ {b1, . . . , bn}). The discriminant points {bk}nk=1 are
then ordered according to the ascending complex argument of the vectors bk−b0,
the argument being measured from −π to π; if two discriminant points lie on
the same ray originating at b0, then the discriminant point which is closer to

2The value of κ is essentially fixed by hand. Since the same number of collocation points is
used on the half-circles and on the connecting lines between them, the length of the half-circles
and the segments of the connecting line between them should ideally be the same to produce
a homogeneous numerical resolution over the path. Therefore, a value of κ close to 1/(π + 2)
would be an appropriate choice. However, for an efficient resolution of high order singularities,
where several sheets of the covering coincide, we choose the distance from the path to each
critical point to be almost the maximal possible. In practice the code uses κ = 1/2.1 to
allow for connecting lines of positive length between the circles (the Maple package works with
κ = 2/5).
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the base point is preceding in the order. This ordering is shown for the studied
example in Figs. 2 and 3 by the numbers in the circles.

Then a minimal tree originating at the discriminant point bk0 closest to the base

point, b0 = b
(1)
k0

, is constructed. To this end, all distances to the remaining bi,
i 6= k0 are computed, and the point with the smallest distance, denoted bk1 , is
chosen as the next vertex on the tree. If there are several points with the smallest
distance, then the one with the smallest ordering number is chosen. The code
stores the pair [k0, k1] to indicate that the tree starts at bk0 and that its next
vertex is at bk1 . To obtain the next vertex, the distances between both bk0 and
bk1 and the remaining bi, i 6= k0, k1 are computed. The smallest distance (in case
of degeneracies again the point with the smallest ordering number is chosen)
gives the next vertex bk2 of the tree, connected by an edge either to bk0 or to
bk1 . The code stores the pair [k0, k2] or [k1, k2]respectively.Repeating this several
times one ends up with a tree containing the points bk0 , bk1 , . . . , bkm as vertices.
The next vertex on the tree is determined as before by computing the minimal
distance between points already on the tree and points bk, k 6= k0, . . . , km and
dealing with degeneracies as before. Thus by construction, one obtains in this
way a minimal spanning tree of the bk, k = 1, . . . , n originating at bk0 . The tree
is not unique because of possible degeneracies of distances between the points,
but the described algorithm will always produce a connected spanning tree with
minimal distances between the points. The result of this procedure for the curve
in Fig. 3 is

paths’ =

7 1 2 3 7 10 9 4 2

1 2 3 4 10 9 8 6 5,

where it can be seen that there is a connection between 7 and 1, then between 1
and 2 , between 2 and 3 and so on.

This tree just indicates in which order the discriminant points appear on the
paths γ̃k. The actual contours will consist of half circles around the bk, k =

1, . . . , n and straight lines between the points b
(1,2)
k , k = 1, . . . , 2. Thus in a

separate step the precise paths will be determined. For each pair of consecutive

points bk0 and bk1 appearing on the tree, the connecting lines between b
(1,2)
k0

and

b
(1,2)
k1

are chosen in a way that they intersect the circles around these two points as
little as possible. To this end the code determines the real part of the difference
between the two points, d = Re(bk1 − bk0). If this distance is greater or equal to

R, the line segment connects b
(2)
k0

and b
(1)
k1

, if it is smaller than −R, the line will

be between b
(1)
k0

and b
(2)
k1

, and for values between −R and R, the points b
(1)
k0

and

b
(1)
k1

are connected. The result of this procedure is stored in a pair of numbers
for each pair of neighbouring vertices in the tree. For the example of Fig. 3 the
code gives
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pathind’ =

1 2 2 2 2 2 2 1 2

1 1 1 1 1 1 1 1 1.

This has to be read together with the above information given by the variable

path. The two variables together specify the edge [b
(j)
i , b

(l)
k ] of the tree, where the

variable path gives the pair (i, k) and pathind gives (j, l). In the considered ex-

ample, the first line segment is thus between b
(1)
7 and b

(1)
1 as can be seen in Fig. 3.

By construction, all connecting lines will have minimal possible lengths whilst
keeping at least the distance δ = R

√
1− κ2 (see [9]) away from the discriminant

points.

The contours γ̃k are then built from these connecting lines and half circles around
discriminant points in the following way. The contour γ̃k1 is a contour starting
at b0 and encircling the point bk1 only. Thus the code constructs γ̃k1 that starts
at the base point b0, goes between the points bk in a sequence of connecting
lines and half circles appearing on the tree before the index k1, then it follows
positively the circle around bk1 and, finally, takes the same path (minus the circle
around bk1) back to the base point. Any discriminant point appearing on this
path is bypassed on a half-circle in positive direction. The contour γ̃5 in Fig. 3

starts for instance at the base point b
(1)
7 with the straight line to b

(1)
1 , then the

half circle in positive direction around b1 to b
(2)
1 , from there the straight line to

b
(1)
2 , the half circle around b2 in positive direction to b

(2)
2 , from there the straight

line to b
(1)
5 , and after a full circle around b5 in positive direction the same path

from b
(1)
5 back to the base point b

(1)
7 in the opposite direction.

A schematic view of the relative positions of the loops γ̃k, k = 1, . . . , 10 con-
structed from the spanning tree in Fig. 3 is presented in Fig. 4.

To determine the monodromies for this set of contours, the algebraic equation
(1) is solved for y at the base point x = b0, which is a generic point of the

curve. Thus, there will be N distinct roots y
(k)
0 , k = 1, . . . , N at this point which

can be determined numerically with the Matlab function roots. The roots are
labeled 1, . . . , N , thus numbering the sheets of the covering of the x-sphere CP1.
These roots are then analytically continued along γ̃k. The analytical continuation

results in the same set of roots y
(k)
0 at x = b0 but in a different order. The

permutation of the roots thus obtained is the monodromy of the Riemann surface
along the path γ̃k.

In order to compute the analytical continuation, we introduce a numerical grid,
which amounts to choosing collocation points on each of the line segments and
half circles. Since later on the code uses γ̃k as integration contours to compute
integrals of holomorphic differentials (see [6, 9] how these can be determined) to
obtain the periods of a Riemann surface (integrals of the holomorphic differentials
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Figure 4. Schematic diagram for the relative position of the con-
tours generated by the minimal tree shown in Fig. 3.

along closed contours formed by the γ̃k), it is convenient to choose the collocation
points in accordance with the used integration scheme. Since we use numerically
optimal Gauss-Legendre integration, which can be implemented conveniently in
Matlab with Trefethen’s code [17, 19], we take Gauss-Legendre points. On each
line segment and half circle there will be thus NG points (typically NG is between
32 and 128).

At each of these collocation points xc, we use roots to solve numerically equation
(1) to obtain N roots y(k)(xc). In general, the ordering of these roots will not
correspond to the one introduced at the base point. Thus the roots are sorted
in a way to have minimal difference with the roots at the previous collocation
point, i.e., |y(k)(xci) − y(k)(xci−1)| = min

j=1,...,N
|y(j)(xci) − y(k)(xci−1)|. In this way the

vector ~y of roots is analytically continued along the contours γ̃k.

Remark 1. By construction, no discriminant points appear on the contours
γ̃k which implies that there will be always N distinct roots y(i) of (1) on these
contours. The roots can be computed in Matlab efficiently with the function roots
as long as they are well separated. It is known that the computation of almost
degenerate zeros of polynomials is an extremely difficult numerical problem, see
for instance [20] and references therein. In the present context, having almost
degenerate roots would mean that the sheets come very close to each other, which
is typically the case near high order singularities. Such singularities can be seen
as a condensation of many double points (the point (0,0) of the example in Fig. 3
is of this type). If another discriminant point comes so close to such a singularity
that the sheets can no longer be numerically distinguished, i.e., if ρ becomes too
small in such a case, the surface cannot be studied with the present code. It is
in fact the ability to distinguish the sheets numerically with the roots function
of Matlab along the contours γ̃k that imposes limitations on which curves can be
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treated by the code. Since these limitations depend strongly on the considered
curve, it is impossible to give a priori limits on the applicability of the code.

If we start at the base point b0 and analytically continue the vector of roots ~y
with components y(i), i = 1, . . . , N as described above along one of the contours
γ̃k, we will in general obtain a permutation σk of the components of the vector
~y back at the base point,

(3) σk~y := (yσk(1)(a), . . . , yσk(N)(a)).

The group generated by the {σi}ni=1 is called the monodromy group of the cov-
ering. The code stores the monodromies σi in the form of a vector of the indices
(σi(1), . . . , σi(N)). For the curve in Fig. 3 and the set of contours γ̃k, k = 1, . . . , n,
one obtains the base point

base =

-1.2895 + 0.3485i

ybase =

-0.9546 - 2.8682i

1.9591 + 1.1931i

-1.0044 + 1.6751i

and the monodromies

Mon =

3 2 1 3 3 1 1 3 1 3

2 1 3 2 2 3 3 2 3 2

1 3 2 1 1 2 2 1 2 1.

This is to be read in the following way: the vector of roots ybase is analytically
continued along the loop γ̃1; the result of this continuation is a new vector of
roots obtained from ybase by permuting the components as specified by the first
vector of Mon, the permutation (321), i.e., starting in the first sheet, one ends
up in the third, starting from the second one stays there, and starting in the
third one ends up in the first.

As was already mentioned, the monodromy at infinity can be computed by an-
alytically continuing the vector of roots ~y at the base b0 along a closed contour
starting and ending at b0 and encircling once all finite discriminant points in
negative direction as shown in Fig. 1. Since the radius of such a loop can be
very large, a high number of collocation points would be needed to obtain the
same accuracy as for the loops around the finite discriminant points. Thus we
will obtain the monodromy there from the relation γ1 . . . γn = γ−1∞ , see (2).
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3. Generators of the fundamental group

The set of initial loops {γ̃k} constructed in the previous section does not satisfy
in general condition (2), as can be seen from Fig. 4 . We call the monodromies

{φ̃k}nk=1 computed along these loops the initial monodromies. In this section
we explain how generators of the fundamental group of the base of the covering
punctured at the discriminant points CP1 \ {b1, . . . , bn} satisfying (2) can be
constructed from the initial loops.

Let us suppose that a permutation σ ∈ Sn exists such that

(4) γ̃σ(1)γ̃σ(2) . . . γ̃σ(n) = γ̃−1∞ .

Then there are two possible ways to proceed. First, the discriminant points {bk}
can be reordered according to σ, i.e., bk := bσ(k) and the corresponding generators
of the fundamental group are given by γk := γ̃σ(k). However, we would like to keep
the initial ordering of the branch points. To this end, the following algorithm is
applied to construct the {γk} satisfying (2): (i) if the permutation σ is trivial,
then put γk = γ̃k. Otherwise, (ii) let σ(m) be the largest number such that
σ(m) 6= m. Then σ(m + 1) < σ(m) and the loop γ̃σ(m) is redefined as follows:
γ̃σ(m) := γ̃σ(m+1)γ̃σ(m)γ̃

−1
σ(m+1) (the loop γ̃−1σ(m+1) is traced first, then γ̃σ(m) followed

by γ̃σ(m+1), see also Fig. 5 below). The permutation σ is then composed with the
transposition swapping σ(m) and σ(m+ 1), i.e., σ := (σ(m)σ(m+ 1)) ◦ σ. After
this, the algorithm is reiterated.

Let us now find the permutation σ from (4) imposed by the minimal tree and
the construction of the initial loops {γ̃k}.
Consider two loops γ, δ ∈ π1(CP1 \ {b1, . . . , bn}, b0), more precisely, consider the
parts from b0 to the respective points they encircle. These might have a common
part close to the base point like some of the initial loops {γ̃k} do. At the point

when γ and δ separate, denote by −→γ and
−→
δ the tangent vectors to the loops.

Then the orientation of the pair (−→γ ,
−→
δ ) indicates the relative position of the

two loops.

Lemma 1. Suppose now that a set of generators {γk}nk=1 of the group π1(CP1 \
{b1, . . . , bn}, b0) is such that (i) each loop encircles only one puncture; (ii) the
pair (−→γ k, −→γ k+1) is positively oriented at any point of separation of γk and γk+1

for all k = 1, . . . , n− 1; (iii) the loops γk do not intersect each other apart from
the base point (there exist representatives in the corresponding homotopy classes
which do not intersect). Then the loops {γk} satisfy (2).

The proof of this lemma is obvious.

By construction, the initial loops {γ̃k} satisfy conditions (i) and (iii) of the
lemma. Therefore, we are looking for the permutation σ ∈ Sn such that the
pairs (−→γ σ(k),

−→γ σ(k+1)) be positively oriented at the corresponding points of sep-
aration of loops for all k = 1, . . . , n− 1.
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Let us introduce some notation. Whenever the path contains a sequence of edges

of the type [. . . , b
(1)
j ] [b

(1)
j , . . . ] or [. . . , b

(2)
j ] [b

(2)
j , . . . ], the point b

(1)
j or b

(2)
j , is called

a v-point. The only such point in Fig. 3 is b
(1)
4 . We call a part of a single branch of

a tree without v-points a string. A node is a vertex where several branches meet.
In what follows, the v-points are considered as nodes, where the corresponding
discriminant point becomes a separate branch consisting of only one point. We
call a node simple if all of its descendants are strings.

In order to find an algorithm which produces the permutation σ from (4) for the
given minimal tree, we first discuss two particular types of trees.

I. In the case when the minimal tree is a string, the permutation σ = (σ(1) . . . σ(n))
is given by the sequence of labels of the branch points read from the end of the

string towards the base point b0 so that b0 = b
(1)
σ(n). This follows directly by

construction of the initial loops.

II. Suppose the tree contains only one node which coincides with the base point
b0. Suppose there are m branches meeting at the node, each of which is a string.
To each branch of the tree the algorithm associates a sequence si = (si1, . . . , s

i
ni

),
i = 1, . . . ,m of numbers like above - a sequence of labels of the discriminant
points read from the end of the string towards the node. This sequence indicates
the order in which the loops {γ̃k} should be composed to give a positively oriented
loop around all points contained in the string. Now we need to decide on the
relative position of the branches at the node, i.e., a relative position of the vectors−→̃
γ si1

, i = 1, . . . ,m at b0. We order the vectors according to the ascending angle
they make with the horizontal ray going from the base point b0 to the left, the
angle is measured from 0 to 2π. This order is expressed as a permutation ρ ∈ Sm
of the indices attached to the branches, i.e., the sequences si are ordered as
follows: sρ(1), . . . , sρ(m). Now the required permutation σ is obtained by writing
the sequences si one after the other in the order they appear at the node: σ =

(σ(1) . . . σ(n)) := (s
ρ(1)
1 . . . s

ρ(1)
nρ(1)s

ρ(2)
1 . . . s

ρ(2)
nρ(2) . . . s

ρ(m)
1 . . . s

ρ(m)
nρ(m)).

Now we are in a position to present the complete algorithm.

Algorithm. In the general case, the algorithm first identifies the end points of
the tree (those without descendants) and the nodes (including the v-points).
Then starting at each of the end points, the algorithm forms a sequence of labels
of the discriminant points going from the current point to its parent until it hits
a node. This process results in a set of all simple nodes and a set of sequences of
numbers attached to every such node. For each of the simple nodes, the procedure
from case II is performed where, if the node is different from b0, instead of the
horizontal ray going left from the base point, the line of arrival to the node with
the reversed orientation is taken (the line of arrival is the line segment from
the previous marked point on the path to the current one). The result of this
procedure is a sequence s of numbers at each node which indicates the order in
which the loops {γ̃k} should be composed to obtain a positively oriented loop
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encircling all descendants of the given simple node and only them. Thus the part
of the tree descending from a simple node can be treated as a string in which
the points are arranged in the obtained order s. Therefore, after the ordering of
the loops at all simple nodes is done, each simple node is considered as an end
point of the tree whose label is given by the sequence of numbers s. Then the
algorithm is reiterated.

We illustrate the algorithm on the example of Fig. 3. The code first identifies
the endpoints

endpoints =

8

6

5,

and the nodes

nodes =

7 2

1 2,

corresponding to the points b
(1)
7 (the base point) and b

(2)
2 . For technical reasons

the v-points are not identified at this stage. Starting from the endpoints, the
code then traces the branches until it hits the first node on each branch. At each
point, it is checked whether the point is a v-point. If such a point is reached, the
standard order procedure at a node is applied. Each point not being a v-point

on such a branch is listed in the order of appearance. Thus at the v-point b
(1)
4 ,

the code considers two branches 6 and 4 and places 4 in front of 6 since the

angle between the reversed arrival line b
(1)
4 b

(2)
3 and b

(1)
4 b4 is smaller than the one

between b
(1)
4 b

(2)
3 and b

(1)
4 b

(1)
6 . At the node b

(2)
2 we thus get the two strings

tree{2} =

4 6 3

tree{3} =

5.

At the node b
(2)
2 , these strings are combined into a single string, where the se-

quence tree{2} comes in front of tree{3} because the angle between the reversed

arrival line b
(2)
2 b

(1)
2 and b

(2)
2 b

(1)
3 is smaller than that between b

(2)
2 b

(1)
2 and b

(2)
2 b

(1)
5 .

This leads to
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Tree =

4 6 3 5

This branch and the one from the remaining endpoint are then traced to the
base point, where we get

tree{1} =

8 9 10 7

tree{2} =

4 6 3 5 2 1.

Again the two strings are combined at the base point according to the angles of
the connecting lines to give

Tree =

4 6 3 5 2 1 8 9 10 7.

In words, this string gives the relative ‘position’ of homotopy classes of the loops
which can also be seen from Fig. 4: in this sense the contour γ̃10 is entirely to the
‘left’ of γ̃k, k 6= 7, 10 as wanted, but it is to the ‘right’ of γ̃7. Thus the contour
γ10 will be obtained by conjugating γ̃10 with γ̃7 to get γ10 := γ̃7γ̃10γ̃

−1
7 (by this

notation we mean that the contour γ̃−17 is traced first, then γ̃10 followed by γ̃7).
The action of such a conjugation is illustrated in Fig. 5: the situation before the
conjugation can be seen on the right, and the effect of the conjugation on the
left.

1

2
Υ2

Υ1

Γ

1

2 Γ

Υ1
~Υ2

~

Figure 5. The contour Γ surrounding the two points 1 and 2 is
represented in two different ways by contours around the individual
points. On the left, Γ = γ2γ1 while Γ = γ̃1γ̃2 on the right. Since
γ2 = γ̃2 it follows that γ̃1 = γ2γ1γ

−1
2 .

The code identifies the largest number m in the string Tree. If it is in the right-
most position, this number is deleted from Tree. If there is a number k to
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the right, the loop γ̃m and the monodromy φ̃m are redefined by γ̃m := γ̃kγ̃mγ̃
−1
k

and φ̃m := φ̃kφ̃mφ̃
−1
k . The numbers m and k are then swapped in Tree. This

procedure is repeated until m is in the right-most position. It is then deleted
from Tree and the procedure is repeated until there is only one element in Tree
left. The resulting loops and monodromies are the desired γk and φk. Finally the
monodromy at infinity is obtained from relation (2). For the considered example
this leads to

Mon =

1 2 2 3 2 1 3 3 1 3

3 1 1 2 1 3 2 2 3 2

2 3 3 1 3 2 1 1 2 1.

In this example infinity is a singular point with trivial monodromy which is why
the code gives no monodromy at infinity (it would appear at position n+ 1). We
note that it is possible to compute the genus g, the only topological invariant of
a Riemann surface, from the monodromies via the Riemann-Hurwitz formula,

g = 1−N +
1

2

NB∑
i=1

βi ,

where N is the total number of sheets, βi is the branching number, the number
of sheets connected at a point on the covering minus 1, and where NB is number
of discriminant points on the covering. For the studied example one finds thus
g = 3.

4. Performance of the code

We have described two algorithms for computing monodromies. The first con-
structs contours γk by the deformation approach, while the second achieves this
from a spanning tree construction. In order to judge the performance of both
approaches we will compute characteristic quantities of a Riemann surface for
several examples.

It is known (see for instance the standard literature on Riemann surfaces such
as [16]) that the space of holomorphic one-forms ω of a surface of genus g is g-
dimensional. For the homology of the surface one can introduce a canonical basis
of cycles ai, bi, i = 1, . . . , g such that ai ◦ bj = δij. These a- and b-cycles can be
obtained from the loops γk, k = 1, . . . , n via an algorithm by Tretkoff and Tretkoff
[18]. For normalized holomorphic one-forms such that

∮
ai
ωj = δij, the matrix of

b-periods Bij =
∮
bi
ωj is a Riemann matrix, it has a positive definite imaginary

part and is symmetric. Thus for a given basis of the holomorphic one-forms,
the code computes the periods from the integrals along the γ̃k, k = 1, . . . , n via
Gauss-Legendre integration. The found numerical Riemann matrix will not be
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exactly symmetric. Since the symmetry of B is not imposed, its asymmetry is a
strong test of the quality of the numerics. In the following we will use the norm
∆ of B− BT (the eigenvalue of the matrix having the largest absolute value) as
a measure of the numerical error. We take two codes which are identical except
for the part where the contours γk are generated and compute their performance
for typical examples.

As already stated, the curve of Fig. 2 and 3 has genus 3. A basis of the holomor-
phic one-forms is given by x3/fy(x, y), x4/fy(x, y), and xy/fy(x, y). The errors
we obtain for κ = 1/2.9 are given in Table 1.

NG ∆def ∆st

8 2.14 ∗ 10−5 1.13 ∗ 10−4

16 8.15 ∗ 10−9 1.55 ∗ 10−9

32 1.61 ∗ 10−13 1.63 ∗ 10−15

Table 1. Norm of B−BT for the curve f(x, y) = y3−2x3y−x9 = 0
for the deformation approach (∆def ) and the spanning tree (∆st)
in dependence of the number NG of collocation points on each
segment of the γk.

It can be seen that the error shows the expected spectral convergence in both
cases, but that the spanning tree gives a numerical error almost two orders of
magnitude better than the deformation approach except for NG = 8 where the
resolution is too low in both cases. It is remarkable that machine precision can
be reached with this method with just 32 collocation points on each segment of
the contours. The whole computation takes just 0.5s on a laptop in this case.

The advantage of the spanning tree is more visible for more involved curves such
as f(x, y) := y9 + 2x2y6 + 2x4y3 + x6 + y2 = 0. This curve of genus 16 has 43
finite discriminant points with minimal distance ρ = 0.018 between them. The
monodromy computation is extremely demanding in this case. The points in the
outer ring in Fig. 6 represent pairs of discriminant points of the curve separated
by a distance of only 0.018. For the deformation approach we have chosen the
base point close to the geometric center of the discriminant points, i.e., close to
the point x = 0. This gives shorter integration paths and was used in general
for the deformation approach in [9]. For the spanning tree the choice of the
base point has no influence on the length of the connecting lines since we use a
minimal tree.

The code produces the values of the norm of the antisymmetric part of the
computed Riemann matrices given in Table 2. The computation with NG = 64
takes 20s in the latter case. The deformation approach did not produce a result
for NG = 32. More importantly the spanning tree needs in this case just half the
number of modes to reach the same precision as the deformation approach until
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Figure 6. Loops for the monodromy computation for the curve
f(x, y) := y9 + 2x2y6 + 2x4y3 + x6 + y2 = 0 obtained with a de-
formation approach with base point close to x = 0 on the left and
with a spanning tree on the right.

both reach the saturation level. This implies that a factor 2 in allocated resources
and CPU time can be gained with this approach which allows consequently the
study of more involved curves.
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