1. Random matrices: a brief intro

2. Asymptotics of Taylor polynomials and the normal matrix model.

Ken McLaughlin, Univ. of Arizona

SISSA, September 18, 2013
The basic example of random matrices: $N \times N$ Hermitian matrices:

\[
M_{jj}: \text{Gaussian random variable: } \text{Prob } \{ M_{jj} < x \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt
\]
The basic example of random matrices: $N \times N$ Hermitian matrices:

M_{jj}: Gaussian random variable: $\text{Prob} \ \{ M_{jj} < x \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$

M_{jk}: Complex Gaussian random variable, $M_{jk} = M_{jk}^{(R)} + iM_{jk}^{(I)}$, with

$\text{Prob} \ \left\{ M_{jk}^{(R)} < x \right\} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$

$\text{Prob} \ \left\{ M_{jk}^{(I)} < x \right\} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$
The basic example of random matrices: $N \times N$ Hermitian matrices:

M_{jj}: Gaussian random variable: $\text{Prob} \{ M_{jj} < x \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$

M_{jk}: Complex Gaussian random variable, $M_{jk} = M_{jk}^{(R)} + iM_{jk}^{(I)}$, with

$\text{Prob} \{ M_{jk}^{(R)} < x \} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$

$\text{Prob} \{ M_{jk}^{(I)} < x \} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$

\[
\begin{pmatrix}
M_{11} & M_{12}^{(R)} + iM_{12}^{(I)} & \cdots & M_{1N}^{(R)} + iM_{1N}^{(I)} \\
M_{12}^{(R)} - iM_{12}^{(I)} & M_{22} & \cdots & M_{2N}^{(R)} + iM_{2N}^{(I)} \\
\vdots & \cdots & \cdots & \vdots \\
M_{1N}^{(R)} - iM_{1N}^{(I)} & M_{2N}^{(R)} - iM_{2N}^{(I)} & \cdots & M_{NN}
\end{pmatrix}
\]

This is referred to as the Gaussian Unitary Ensemble
Using Matlab, we can generate random matrices and compute their eigenvalues.
Using Matlab, we can generate random matrices and compute their eigenvalues.
Using Matlab, we can generate random matrices and compute their eigenvalues.
Using Matlab, we can generate random matrices and compute their eigenvalues.
Using Matlab, we can generate random matrices and compute their eigenvalues.
N = 200

N = 400

N = 600

N = 800
The basic example of random matrices: $N \times N$ Hermitian matrices:

M_{jj}: Gaussian random variable, $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}M_{jj}^2} dM_{jj}$

M_{jk}: Complex Gaussian random variable, $\frac{1}{\pi} e^{-|M_{jk}|^2} dM_{jk}^{(R)} dM_{jk}^{(I)}$

Joint prob. measure: $\frac{1}{\# N} \exp \left\{-\text{Tr} \left[\frac{1}{2} M^2 \right]\right\} dM,$

$$dM = \prod_{j<k} dM_{jk}^{(R)} dM_{jk}^{(I)} \prod_{j=1}^{N} dM_{jj}$$

This is referred to as the Gaussian Unitary Ensemble
Support seems to grow like \sqrt{N}...

Rescale the matrices $M \mapsto N^{1/2}M$:

Joint prob. measure: $\frac{1}{\#N} \exp \left\{ -N \text{ Tr} \left[\frac{1}{2} M^2 \right] \right\} \, dM,$

$$dM = \prod_{j<k} dM_{jk}^{(R)} \, dM_{jk}^{(I)} \prod_{j=1}^{N} dM_{jj}$$

Still unitarily invariant...
Unitary Ensembles of Random Matrices

Consider the probability measure on $N \times N$ Hermitean matrices given by

$$\frac{1}{\hat{Z}_N} \exp \left\{ -N \text{Tr} \left[V(M) \right] \right\} dM$$

$$dM = \prod_{j < k} dM^R_{jk} \prod_{j = 1}^N dM_{jj} \prod_{j = 1}^N dM^I_{jk}$$

$$\hat{Z}_N = \int \exp \left\{ -N \text{Tr} \left[V(M) \right] \right\} dM$$

Historically, the interest has been in the probabilistic description of the eigenvalues, as $N \to \infty$

Gaussian Unitary Ensemble: $V(x) = x^2/2$
There are many different matrix models.

\[
\frac{1}{\hat{Z}_N} \exp \left\{ -N \text{Tr} \left[V(M) \right] \right\} dM
\]

Example 2: \(N \times N \) Unitary matrices
(Using Haar measure)

Example 3: A coupled Matrix Model

\[
\frac{1}{\hat{Z}_N} \exp \left\{ -N \text{Tr} \left[\frac{1}{2} A^2 + B^2 + C^2 - it (ABC + ABC) \right] \right\} dA \ dB \ dC
\]
Example 4: Normal Matrix Model:

A weaker symmetry requirement: $[M, M^*] = 0$.

Given $V(z, \bar{z})$, one defines

$$\frac{1}{Z_N} \exp \left[- \frac{N}{t} \text{Tr} \left(V(M, M^*) \right) \right] \text{“}dM\text{“}$$

Induced measure on eigenvalues:

$$\frac{1}{\hat{Z}_N} e^{-\frac{N}{t} \sum_{j=1}^{N} V(z_j, \bar{z}_j)} \prod_{1 \leq j < k \leq N} |z_j - z_k|^2 \ dA(z, \bar{z})$$
What does one want to calculate

as $N \to \infty$?
Mean density of eigenvalues

Consider the random variable \(\frac{1}{N} \# \{ \lambda_j \in \mathcal{B} \} \).

What is its average behavior?

\[
E \left[\frac{1}{N} \# \{ \lambda_j \in \mathcal{B} \} \right] = \int_{\mathcal{B}} \rho_1^{(N)} \left\{ dx \right\} dy
\]

\(\rho_1^{(N)} \) is called the mean density of eigenvalues

Question: behavior when \(N \to \infty \)???
Movie of $\rho_1^{(N)}$ for $N = 1$ through $N = 50$.

\[\frac{1}{\#N} \exp \left\{ -N \text{ Tr} \left[\frac{1}{2} M^2 \right] \right\} dM, \]
\[
\frac{1}{\#_N} \exp \left\{ -N \text{Tr} \left[\frac{1}{2} M^2 \right] \right\} \, dM,
\]

Movie of \(\rho_1^{(N)} \) for \(N = 1 \) through \(N = 50 \).
Movie of $\rho_1^{(N)}$ for $N = 1$ through $N = 50$.

\[\frac{1}{\#_N} \exp\{-N \text{ Tr}[\, M M^*]\} \, dM, \]
\[
\frac{1}{\#_N} \exp \left\{ -N \; \text{Tr} \left[\begin{array}{c} MM^* + \frac{T^2}{2} \left(M^2 + (M^*)^2 \right) \end{array} \right] \right\} \; dM,
\]

Movie of $\rho_1^{(N)}$ for $N = 1$ through $N = 50$.

Wednesday, September 18, 13
\[
\frac{1}{\#_N} \exp \left\{ -N \operatorname{Tr} \left[M^2 (M^*)^2 \right] \right\} \, dM,
\]

Movie of \(\rho_1^{(N)} \) for \(N = 1 \) through \(N = 60 \).
Occupation Probabilities

\[F(B, z) = \sum_{k=0}^{\infty} \text{Prob } \{ \mathcal{B} \text{ has } k \text{ eigenvalues} \} z^k \]

\(F(B, z) \) is called the occupation probability generating function.

Question: behavior when \(N \to \infty \)???
Example 4: Normal Matrix Model:

\(n \times n \) matrices with \([M, M^*] = 0\).

Given \(Q(z, \bar{z}) \), one defines

\[
\frac{1}{Z_N} \exp \left[-N \text{Tr} (Q(M, M^*)) \right] dM
\]

Induced measure on eigenvalues:

\[
\frac{1}{\hat{Z}_N} e^{-N \sum_{j=1}^{n} Q(z_j, \bar{z}_j)} \prod_{1 \leq j < k \leq n} |z_j - z_k|^2 \ dA(z, \bar{z})
\]
Orthogonal Polynomials

\[P_{n,N}(z) = z^n + \mathcal{O}(z^{n-1}) \quad (n = 0, 1, \ldots) \]

\[
\int_{\mathbb{C}} P_{k,N}(z) \overline{P_{l,N}(z)} e^{-NQ(z,\bar{z})} dA(x,y) = h_{k,N} \delta_{k,l}
\]

\[
\rho_{1}^{(N)}(z,\bar{z}) = e^{-NQ(z,\bar{z})} \sum_{\ell=0}^{N-1} h_{\ell,N}^{-1} |P_{\ell,N}(z)|^2
\]

\[
K_{N}(z,w) = e^{-\frac{1}{N}(Q(z)+Q(w))} \frac{1}{N} \sum_{k=0}^{n-1} h_{k}^{-1} P_{k,N}(z) \overline{P_{k,N}(w)}
\]

Their asymptotic behavior is wide open.
Small collection of examples for which calculations are explicit

- $Q(x, y) = x^2 + y^2$: Polynomials are $P_n(z) = z^n$, and

$$
\rho_N = \frac{1}{\pi} e^{-N|z|^2} \sum_{j=0}^{n-1} \frac{(N|z|^2)^j}{j!}
$$

as $N \to \infty$, support is a disc of radius 1, and $\lim_{N \to \infty} \rho_N = 1$.
Small collection of examples for which calculations are explicit

- \(Q(x, y) = x^2 + y^2 \): Polynomials are \(P_n(z) = z^n \), and

\[
\rho_N = \frac{1}{\pi} e^{-N|z|^2} \sum_{j=0}^{n-1} \frac{(N|z|^2)^j}{j!}
\]

as \(N \to \infty \), support is a disc of radius 1, and \(\lim_{N \to \infty} \rho_N = 1 \).

\[
K_N(z, w) = \frac{1}{\pi} e^{-N(|z|^2+|w|^2)/2} \sum_{j=0}^{n-1} \frac{(Nzw)^j}{j!}
\]
Small collection of examples for which calculations are explicit

- $Q(x, y) = x^2 + y^2$: Polynomials are $P_n(z) = z^n$, and

$$
\rho_N = \frac{1}{\pi} e^{-N|z|^2} \sum_{j=0}^{n-1} \frac{(N|z|^2)^j}{j!}
$$

as $N \to \infty$, support is a disc of radius 1, and $\lim_{N \to \infty} \rho_N = 1$.

- $Q = Q(|z|)$: $P_n = z^n$, limiting support is again a disc,

$$
\rho_N = \frac{e^{-NQ(|z|)}}{N} \sum_{j=0}^{n-1} \frac{|z|^{2j}}{2\pi \int_0^\infty r^{2j+1} e^{-NQ} \, dr} \to \frac{1}{4} \Delta V(|z|).
$$

$$
K_N(z, w) = \frac{e^{-N(Q(|z|)+Q(|w|))/2}}{N} \sum_{j=0}^{n-1} \frac{(zw)^j}{2\pi \int_0^\infty r^{2j+1} e^{-NQ} \, dr}
$$

• Analysis of kernel via potential theory, Bergmann kernel: Work of Ameur, Hedenmalm, Makarov

• Approach to general asymptotic analysis of 2D orthogonal polynomials: $\overline{\partial}$ problem, described by Its and Takhtajan, and Balogh and Harnad.
We have recently considered \(Q = |z|^2 + 2c \log \frac{1}{|z - a|} \)

\[
\frac{1}{Z_N} e^{-N \text{Tr} \left(M M^* \right)} |\det(M - a)|^{2Nc} \ dM
\]

arXiv:1209.6366
(With F. Balogh (SISSA), M. Bertola (Concordia Univ.), S. Y. Lee (Caltech)
With remaining time:

Asymptotic behavior of the zeros of \(\sum_{j=0}^{N-1} \frac{z^j}{j!} \)

Related questions

Application to NMM (for fun)
\[\sum_{j=0}^{N-1} \frac{z^j}{j!} \]
\[
\sum_{j=0}^{N-1} \frac{(Nz)^j}{j!}
\]
\[
\sum_{j=0}^{N-1} \frac{(Nz)^j}{j!} = e^{Nz} \left(1 + O\left(\frac{1}{N}\right)\right)
\]
\[f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{s - z} \, ds . \]
\[f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(s)}{s-z} \, ds. \]

\[= \sum_{j=0}^{N-1} \frac{f^j(0)}{j!} z^j + \frac{z^N}{2\pi i} \oint_{\gamma} \frac{f(s)}{s^n} \frac{ds}{s-z}. \]
\[f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{s - z} ds. \]

\[= \sum_{j=0}^{N-1} \frac{f^j(0)}{j!} z^j + \frac{z^N}{2\pi i} \int_{\gamma} \frac{f(s)}{s^n} \frac{ds}{s - z}. \]

If \(f(s) = e^s \), \(z \mapsto Nz \), \(s \mapsto Ns \):

\[e^{Nz} = \sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j + \frac{z^N}{2\pi i} \int_{\tilde{\gamma}} e^{N(s - \ln(s))} \frac{ds}{s - z}. \]
\[
\sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = e^{Nz} - \frac{z^N}{2\pi i} \int_{\tilde{\gamma}} e^{N(s - \ln(s))} \frac{ds}{s - z}.
\]

Steepest descent method for integrals:

\[
\sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = e^{Nz} - \frac{z^N e^N}{1 - z} \frac{1}{\sqrt{2\pi N}} \left(1 + O \left(\frac{1}{N} \right) \right)
\]

Looking for zeros:

\[
e^{-Nz} \sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = 1 - \frac{(ze^{1-z})^N}{1 - z} \frac{1}{\sqrt{2\pi N}} \left(1 + O \left(\frac{1}{N} \right) \right)
\]
Looking for zeros:

\[e^{-Nz} \sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = 1 - \frac{(ze^{1-z})^N}{1 - z} \frac{1}{\sqrt{2\pi N}} \left(1 + O\left(\frac{1}{N} \right) \right) \]

\(\{ z : \left| ze^{1-z} \right| = 1 \} \)
And the density of eigenvalues

\[e^{-Nz} \sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = 1 - \frac{(ze^{1-z})^N}{1-z} \frac{1}{\sqrt{2\pi N}} \left(1 + O \left(\frac{1}{N} \right) \right) \]

\{ z : |ze^{1-z}| = 1 \}

\[
\rho_1^{(N)}(z) = e^{-N|z|^2} \sum_{j=0}^{N-1} \frac{1}{j!} (N|z|^2)^j = 1 - \frac{(|z|^2e^{1-|z|^2})^N}{1-|z|^2} \frac{1}{\sqrt{2\pi N}} \left(1 + O \left(\frac{1}{N} \right) \right)
\]
And the kernel

\[e^{-Nz} \sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = 1 - \frac{(ze^{1-z})^N}{1 - z} \frac{1}{\sqrt{2\pi N}} \left(1 + \mathcal{O}\left(\frac{1}{N} \right) \right) \]

\{ z : |ze^{1-z}| = 1 \}

\[K_N(z, w) = e^{-N(|z|^2 + |w|^2)/2} \sum_{j=0}^{N-1} \frac{1}{j!} (Nzw)^j = \]

\[e^{-N(|z|^2 + |w|^2)/2} e^{Nzw} \left(1 - \frac{(z\overline{w}e^{1-z\overline{w}})^N}{1 - z\overline{w}} \frac{1}{\sqrt{2\pi N}} \left(1 + \mathcal{O}\left(\frac{1}{N} \right) \right) \right) \]
\[
\sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = e^{Nz} - \frac{z^N}{2\pi i} \int_{\tilde{\gamma}} e^{N(s-\ln(s))} \frac{ds}{s-z}.
\]

Steepest descent method for integrals:
\[
\sum_{j=0}^{N-1} \frac{1}{j!} (Nz)^j = e^{Nz} - \frac{z^N e^N}{1 - z} \frac{1}{\sqrt{2\pi N}} \left(1 + \mathcal{O} \left(\frac{1}{N} \right) \right)
\]

Trouble for \(z\) near the stationary phase point 1.
\[Q = |z|^{2n} \]

\[
K_N = nN^{1/n} e^{-\left(|z|^{2n} + |w|^{2n}\right)/2} \sum_{j=0}^{N-1} \frac{(N^{1/n} z \bar{w})^j}{\pi \Gamma \left(\frac{j+1}{n} \right)}
\]

Taylor polynomial of degree \(N - 1 \) for

\[
\sum_{j=0}^{\infty} \frac{x^j}{\pi \Gamma \left(\frac{j+1}{n} \right)}
\]

Which, it turns out (thanks Dario e Matteo!) is a special function:

\[
\frac{n}{\pi} \sum_{j=0}^{\infty} \frac{x^j}{\Gamma \left(\frac{j+1}{n} \right)} = \frac{1}{\pi} x^{n-1} e^{x^n} \left[n^2 + \sum_{\ell=1}^{n-1} \frac{\ell}{\Gamma \left(\frac{n-\ell}{n} \right)} \int_0^{\infty} t^{1-\frac{\ell}{n}} e^{-t} \, dt \right]
\]
Thank You!!!
Other fundamental quantities: gap probabilities

\[\text{Prob} \{ \text{no evals in } (a, b) \} \]

\[F_N(\mu) = \text{Prob} \{ \lambda_{max} < \mu \} \]

These are "local" or "microscopic" statistical quantities...
GUE: Density of $\left(\lambda_{\text{max}} - \sqrt{2N} \right) N^{1/6}$