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The Sine-Gordon Equation

Semiclassical limit for pure-impulse initial data.

Consider the following Cauchy problem for u“ = u“(x, t):
Aul, — Ful +sin(w) =0, xeR, >0,

u(x,0) = F(x), cu; (x,0) = G(x).
Here ¢ > 0 is a parameter, and F and G are independent of e.

@ Suppose that this Cauchy problem has a unique solution u*(x, t)
for all sufficiently small ¢ > 0. What can be said about the
asymptotic behavior of u(x, ¢) in the limit ¢ | 07

@ Analyzing this kind of asymptotic question is what it means to
study the semiclassical limit for the sine-Gordon Cauchy problem
in laboratory coordinates.

@ For convenience, we consider only pure impulse initial data, i.e.
F(-)=0.



The Sine-Gordon Equation

Impulse threshold for rotation.

The sine-Gordon equation as a perturbed simple pendulum:
upr +sin(u) = €us,, u(x,0) = F(x), u5(x,0) = G(x),
where r = ¢T. The unperturbed problem conserves total energy
E=1(uf)? + (1 —cos(u)) = 1G(x)?, ifF=o0.

For T = O(1), the pendulum at x undergoes approximate
@ librational motion (Ju‘| < 7) if E = E(x) < 2
@ rotational motion (u“ growing without bound) if E = E(x) > 2.

Therefore, a sufficiently strong initial impulse profile should produce
both types of motion separated by values x = x.i; where G(xi) = +2.



The Sine-Gordon Equation

R. Buckingham and P. D. Miller, Mem. AMS, 225, 1—152, 2013.

This basic picture has been confirmed rigorously for a wide variety of
initial impulse profiles G.

G(z) = —3sech(z) (x,t) € (—2.5,2.5) x (0,5)
| €=0.1875

:x:
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The Sine-Gordon Equation
R. Buckingham and P. D. Miller, J. d’Anal. Math., 118, 397-492, 2012.

Consider the behavior of u“(x, 7) near a point x = x where the initial
data crosses the pendulum separatrix at ¢t = 0:

At ~ elog(e™h)

Let v := [12G' (xcrit)] ~! > 0 and set Ax := x — Xcri.



The Sine-Gordon Equation

R. Buckingham and P. D. Miller, J. d’Anal. Math., 118, 397-492, 2012.

Set Uyp(y) := 1 and Vy(y) := —y/6. Generate {Uy, Vu}mez by the
recursions

! 2
a2 _éyUM(y) - ZZ{?Z(& - %u,’,g(y) and V() := uml(y)

um—1<)’) =

1 1 Vi) 1
and V,_ = =V(y) — 2 — W ().
RO 1) = V() () 6 )
It turns out that (U, V) = (U, V,,) satisfy for each m the coupled
system of second-order Painlevé ll-type equations

U’ (y) + 2U(y)*V(y) + %y?/f (y)=0

V() + UOIVO) + V) =0.



The Sine-Gordon Equation

R. Buckingham and P. D. Miller, J. d’Anal. Math., 118, 397-492, 2012.

Fix an integer m and assume that (x, 7) lies in the horizontal strip S,, in
the (x,r)-plane given by the inequality

<

2
1= Zme log(¢™ 1) clog(e71).

W =

Suppose also that Ax = O(¢2/3). Then as ¢ — 0,

cos(%uf(x, 1)) = (—1)"sgn(U,(y)) sech(T) + o(1)
sin($u‘(x,1)) = (—1)""! tanh(T) + o(1)
where
t 4]/1/3 Ax
T := . 2mlog ( BT > +log|Un(y)|, and y:= ST



The Sine-Gordon Equation
R. Buckingham and P. D. Miller, J. d’Anal. Math., 118, 397-492, 2012.
The leading terms determine a limiting function (7)) modulo 27

cos(u(T)) := 2sech?(T) — 1 and sin(u(T)) := —20 sech(T) tanh(T),
and «(T) is an X-independent solution of the unscaled equation
urr — uxx + sin(u) = 0.

This exact solution represents a superluminal (infinite velocity) kink
with unit magnitude topological charge o := sgn(Uy,(y)).
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The Sine-Gordon Equation

R. Buckingham and P. D. Miller, J. d’Anal. Math., 118, 397-492, 2012

The kink is slowly modulated in the direction parallel to the wavefront;

the center (T = 0) is located along a vertical translate of the graph of
—log [Un(y)]:

i
|
I

The strips Sy, . . ., Se in the (v, 1)-plane for e = 10> and 4v'/3 = 1, and
the curve T = 0 in each strip.

Note the left-right asymmetry of the pattern.



Rational Painlevé-Il Functions
Relation to the inhomogeneous Painlevé-Il equation.

The logarithmic derivatives

Vin(y)
satisfy uncoupled equations:
" 3 2 2
Pn(y) = 2Pu(y)” + 3yPu(y) = 3m
2 2
Qn(y) =2Qn(y)* + 3yQu(y) + 3 (m = 1).

There exists a unique rational solution to the inhomogeneous
Painleveé-Il equation (Pll-«)

2 2
P"(y) =2P(y)’ + PPO)+ 350 aeC

iff « € Z (Y. Murata, 1985). Thus all such solutions arise in this way.



Rational Painlevé-ll Functions
History & applications.

The functions P,,(y) appear to have been discovered as solutions of
Pll-a for « = m € Z via Backlund transformations by Airault (1979).

The functions P,,(y) are known to be important in several applications:

@ Their singularities describe equilibrium configurations of
interacting fluid vortices in the plane. (P. Clarkson, 2009)

@ They appear in string theory. (C. Johnson, 2006).

@ The related functions U,,(y) describe the universal wave pattern
near a simple crossing of the pendulum separatrix in the
semiclassical sine-Gordon equation.

Key point: in the latter application the question of the large-|m|
asymptotic behavior of the rational Painlevé-Il functions is natural. It is
associated with understanding how the universal wave pattern near the
critical point matches onto the larger-time dynamics of sine-Gordon.



Rational Painlevé-Il Functions

Poles and zeros.

The real poles and zeros of U,,(y) are important in part because they
locate the grazing collisions of the kinks.
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More insight can be gained by looking in the complex y-plane. ..



Rational Painleve-ll Functions
Poles and zeros.
The functions U, (y) are ratios of consecutive Yablonskii-Vorob’ev
polynomials. The complex zeros of these polynomials were studied
numerically by Clarkson and Mansfield (2003).
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Red/black dots: poles/zeros. These pictures suggest an explanation
for the left-right asymmetry of the universal wave pattern.



Techniques of Asymptotic Analysis

Flaschka-Newell isomonodromy theory.

Flaschka and Newell (1980) considered the Lax pair:

ov —i(4C* +x+2¢%) 4Cq—2ir +v(¢! v _[-i( ¢ v
o¢ | 4g+2ir+vCt (4 +x+2¢0) | ax | q iC

for which the compatibility condition is ¢”(x) = 2¢* + xqg — v. Note that
P=()"q, y=(3)""x, a=-v = Pll-aforP(y).

In this setting, the rational solutions P,,(y) for « = m € Z correspond to
the case that all Stokes multipliers are zero. The inverse monodromy
problem amounts to the construction of a meromorphic matrix function
of ¢ with only one pole of order |m| at { = 0 with given exponential
behavior at ( = o, i.e. a Riemann-Hilbert problem without jumps
solvable by determinants. The rational functions P, (y) are the solitons
of PII.



Techniques of Asymptotic Analysis

Alternative Jimbo-Miwa theory.

Encoding the rational functions P,,(y) in terms of a Riemann-Hilbert
problem with jumps instead of poles is preferable for asymptotic
analysis in the limit « = m — oc.

Luckily, such a representation is exactly what comes out of
sine-Gordon: a Riemann-Hilbert problem with jumps and no poles
characterizing P,,(y) (as well as U,,(y)) related to the Lax pair found by
Jimbo and Miwa (1981):

ac 2| —6VC-22  3C+6UV+y| ay 2|-2v ¢

ov 1 [-3C—-6UY—y 6UC+2W ] ov 1[_4 2u]v
with compatibility conditions

W(y)==3U'(y), W) =6UY) V() +U(y),
Z(y) =3V'(y), Z'(y) = —6U(y)V(y)* — yV(y).



Techniques of Asymptotic Analysis

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The sine-Gordon inverse-scattering problem can be written as a matrix
Riemann-Hilbert problem: given a contour > C C and a matrix function
V:¥—SL2,C), findM:C\ X — SL(2,C) such that:

@ M. (w) =M_(w)V(w) holds at each point of ¥ and

@ M(w) »Tasw — .

After some systematic preparations (introduction of g-function,

Deift-Zhou steepest descent method) this problem is converted into
another equivalent one in which:

@ As ¢ — 0, V(w) converges uniformly to something simple except
near one point, w = w, ~ —1.

@ Away from w, there is an obvious approximate solution indexed by
an arbitrary parameter m € Z.



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.
For w =~ w,, the jump matrices V(w) don’t converge uniformly:

1 jek(w)/e 1 0
0 1 iekw)/e 1

1 0
iekw)/e 1

-1 _Z'efk(w)/s
0 -1

|:1 Z'efk(w)/sj|

1 0
0 1 jek(w)/e 1



Techniques of Asymptotic Analysis

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The exponent function k(w) = k(w; x, t) is globally complicated, but is
approximately cubic near w, when x ~ x.; and r ~ 0. By Chester,
Friedman, and Ursell (1957), there are analytic spacetime coordinates
r(x, 1) = Ax/(2v'/3) and s(x, 1) ~ t such that k(w) = k(w; x, 7) is exactly a
cubic polynomial in a new variable ¢:

k(w)

€

_ 3 s Ww)

_C +yC 67 C_ (1/3 9 y_ 62/3‘

The large constant term in the cubic can be removed by an explicit
transformation. The value of m indexing the “outer” approximation has
to be matched to the value of s; this leads to the necessity of
introducing the coordinate strips S,,,.



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.
The problem reduces to the following parametrix RHP for Z,,(¢; y):

1 Z'e_CS—Z/C 1 0
0 1 ieSt e q

e ) Jim Z,(C:) (~0) 1 = 1

n -

—1 _ie_gs -y¢
0 1

1 de=¢ v 1 0
0 1 jeSt e q



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.
Let L, := Ze (¢ ¢)03/2,
@ This transformation removes all exponential factors from the jump
matrices. It follows that

OL, 0L,
m —L_ m = —L_
U By and V ac

are both entire functions of (.

@ Prescribed behavior of Z,, as { — oo implies that U,, and V,, are
polynomials of degree 1 and 2 respectively. The coefficients in
these polynomials come from the large-¢ expansion of Z,,,.

@ Therefore, L, satisfies the overdetermined linear system

oL JL
nm — mLm m
2y U and ac

=V, L.

This is precisely the Jimbo-Miwa Lax pair.



Techniques of Asymptotic Analysis

Basic approach to large-m asymptotics.

We analyze the parametrix RHP for Z,,(¢;y) in the limit m — oo using
the Deift-Zhou steepest descent method. Note that for each fixed
m € Z, we have the exact formulae:

Un(y) = Ami2(y) a@nd  Pr(y) = Ana(y) — i:zg;

where the matrices A,,(y) and B,,(y) are obtained from the expansion:

Zn(Gy) (=) U272 = T4 A, ()¢ 4+ B2+ 0(CTY), ¢ — 0.

We scale: z:= (m — 3)~!/3¢ and x := (m — )72/3y.

Some asymptotic features of the functions U4,,(y) and P,,(y) resemble
those of more general solutions of Pll-« in the limit of large « obtained
by Kapaev (1997) by means of the isomonodromy method, an
important precursor of the steepest descent method.



Asymptotic Description of U4, and P,, for Large m

Formulae valid for sufficiently large |x|. One-cut/genus-zero analysis.

The cubic equation 35* + 4xS + 8 = 0 has a unique solution S = S(x)
that is analytic for x € C\ X5 where X is the contour

(8471)1/3 oim/3

1)1/3

|
N
ENES

(%1)1/3 o—in/3

Note that S(x) = —2x~! + O(x*) as x — oo and S(x) is real for x € R.



Asymptotic Description of U4, and P,, for Large m

Formulae valid for sufficiently large |x|. One-cut/genus-zero analysis.

Theorem

There exists a piecewise-analytic simple closed curve OT such that
uniformly for x = y/(m — 1)*/3 bounded outside 9T (and also for x as
close as log(m)/m from an edge — but not a corner), as m — +oo,

mme/3efm)\(x)um _ U(x) + O(mil), U(X) — eXS(X)/6’

m B3P, =Px) +O(m™"), P(x):= —%S()c)7

where the normalizing exponent for U is A(x) := 15(x)* — log(3S(x)).

Poles and zeros of U,,(y) in the x-plane for
m = 20 and the curve OT. The opening
angle of 9T at each corner is exactly 27/5.

OT is (part of) the zero locus of an explicit
(in S) harmonic function.




Asymptotic Description of U4, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Boutroux ansatz method: Let xy be a fixed complex number and set
y=(m—=3)*(x0+(m—3)""w).

Writing P, (y) = (m — 1)1/3¢(w) converts the exact equation

2 2
Pi(y) = 2Pu(y)® + 3Pn(y) = 3m

into the form

/) = 2000 + r0000) = 5 + (m = 17 Swgtn) - 5.
Neglecting the formally small final term results in an equation solved
by elliptic functions with modulus depending on xy. This turns out to be
a valid approximation, as long as xy lies within the interior of T, the
“elliptic region”.



Asymptotic Description of U4, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Theorem

There exists a smooth but non-analytic function A : T — C such that
withy = (m — 1)?3x andx = xg + (m — 1)~'w, as m — +oo0,

m—2m/3e—mA(x)um _ Up (W;'X()) :
1+ O(m= Uy, (w; x0))
m71/37)m — Pm(wa xo)

1+ (’)(m“?m(w;xo))’

both hold uniformly for x, in compact subsets of T and w bounded,
where U, (w; xo) and P, (w;xo) are explicitly constructed in terms of the

Riemann theta function associated with a uniquely determined elliptic
curve I'(xp).




Asymptotic Description of U4, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Some notes:

@ For each xy € T, P,.(w; xo) is an elliptic function of w that solves
the Boutroux ansatz differential equation.

@ Accuracy even near poles is obtained using Backlund
transformations.

@ Pole/zero locations accurate to O(m~2) in x; spacing scales as
m.
@ Interpretation of two-variable approximations:
@ x is a coordinate on the base manifold 7. Setting w = 0 gives a
uniform approximation that is not meromorphic in xo = x.
e w is a coordinate on the tangent space to T at x,. Fixing xo and
varying w gives a tangent approximation that is meromorphic in w
but only locally accurate.



Asymptotic Description of U4, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Plots of 2 arctan(|i4,,(0; x)|) with zeros (o) and poles (x) of Uy,.
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Asymptotic Description of U, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

From our approximate formulae:
@ We prove that the function m=!/3P,,((m — 1)*/3x) converges to a

continuous limit Praero(x) in the distributional topology of
2'(C\ 9T), as well as in the (suitably PV-regularized)
distributional topology of 7/(R\ {x¢,x.}), where (x.,x,) = TNR.

Re Pmacro (Pmacro( )

04
02
) :
-02
-04

Note 9Pmacro(x )#O0forxeT.




Asymptotic Description of U4, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

From our approximate formulae:

@ We calculate the asymptotic planar density (at x € T) and linear
density (at x € T N R) of poles of U,,. Taking out a factor of m?,

these are:
Planar Density op(x) Linear Density oy (x)
0.15
012 m
00 0.09 \
-0.04 /
0.06}/ \
0.03 “
oo 0.03
0.01 0 ‘ - !
X -2 -1 0 1 X
0 X

op(x) is inversely proportional to the real area of the Jacobian of
I'(x). oL(x) is inversely proportional to the real period of the elliptic
function P,, as a function of w.



Asymptotic Description of U4, and P,, for Large m

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Quantitative comparison for x € T NR of m=2"/3e= A, ((m — 1)3x),
the uniform approximation U,,(0;x), and the tangent approximation
based at the origin Uy, ((m — 1)x;0):

m=3
2 —

m=9

Exact
—— Uniform Approx.

rrrrrrrr Tangent Approx.




Asymptotic Description of U4, and P,, for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.
Quantitative comparison for x € T NR of m~'/3P,,((m — 1)*/3x), the

uniform approximation P.(0; x), the tangent approximation based at
the origin P,,((m — 1)x;0), and the weak limit Ppaero (x):
m=3

2 ‘ - 2
V] e i U !
] — o |1 1l
0
‘ _2‘ H ‘ :
Xe Xe -2
X
Exact
—— Uniform Approx.
———————— Tangent Approx.

—— Weak Limit




Asymptotic Description of U4, and P,, for Large m

Formulae valid near an edge. Hermite parametrix plus “improvement”.

Each of the three smooth arcs of 9T has a representation of the form
R{fi(x)} =0, k = 0,+1, where fi (x) = fo(e*>™/3x), and where f;(x) is
analytic for |arg(x)| < 7 /3. The relation ¢ = fy(x) defines a conformal
map taking the arc of 9T with |arg(x)| < 7 /3 to the segment of the
imaginary axis in the c-plane with —27 < ${c} < 0:

T_5_3_1
2727272
0
L 1
/
—~— ~—
N S
& f o T
[ \\_
—27

| %{x} | | m?)?‘{c}/l(‘)g(m)‘



Asymptotic Description of U4, and P,, for Large m

Formulae valid near an edge. Hermite parametrix plus “improvement”.

Theorem

Assume that R{c(x)} = O(m~'log(m)) and that

=21 < a < ¥ec(x)} < B <0. ThenU,, and P,, are approximated by
explicit trigonometric formulae, and there exists a family of functions
dk (x) such that the poles of U,, are approximated by

c(x) = —(K+%)m_1 log(m)+m~'dg (x)+2nijm™, jeZ, K=0,1,2,3,.}.

Thus, the poles lie approximately along the vertical lines

R{c} = —(K + 3)m~!log(m). Moreover, the poles are “staggered” in
both K and m, and the staggering effect weakens as 3{c} approaches
—2m or 0, that is, as x approaches a corner of T.



Asymptotic Description of U4, and P,, for Large m

Formulae valid near a corner. Painlevé-| tritronquée parametrix.

Here are results are formulated in terms of the famous fritronquée
solution yrr(v) of the Painlevé-I equation (Pl):

The solution yrr(v) is distinguished by its asymptotic behavior:

vy 1/2 ) 4m
yrr(v) = (8) +0(W ™), v—oo, |arg(v)|< 5
All solutions of Pl have double poles as their only singularities. The
Hamiltonian associated to each solution y(v) and defined by

1
H(v) := 5y (v)? + vp(v) = 25(v)°
Has only simple poles. Let Hrr(v) denote the Hamiltonian of the
tritronquée solution yrr(v).



Asymptotic Description of U4, and P,, for Large m

Formulae valid near a corner. Painlevé-| tritronquée parametrix.

The negative real corner of T is the point x. = —(9/2)%/3.

Theorem

There exists a function S\(x) analytic at x., such that with
v = _21/153—1/3m4/5(x _ xc),

U, = m2m/36m5\(x)671/3875\()&)/271/3

. [1 4 225 Hp (vym VS & O(m—2/5)}
P, = —m'36=1/3

. [1 4225 (v)m VS +(9(m_2/5)]

both hold uniformly forv = O(1) such thatv is also bounded away from
all poles of Hrr(v).




Conclusion

@ In a semiclassical multi-scaling limit solutions to the sine-Gordon
equation with initial data crossing the pendulum separatrix exhibit
a universal structure near the crossing points. Superluminal kinks
are centered along the real graphs of the rational functions 4,
associated with the Painlevé-ll-a equation.

@ The rational PlI-a functions are “solitons” from the point of view of
the Flaschka-Newell theory, but they can be obtained from the
Jimbo-Miwa theory by means of a Riemann-Hilbert problem with
jumps along contours rather than poles.

@ The latter formulation makes possible the extraction of detailed
asymptotic formulae (also effective for numerical computation) for
U,, and P,, in the limit of large m by the steepest descent method.
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