The Semiclassical Sine-Gordon Equation and Rational Solutions of Painlevé-II

Peter D. Miller

Department of Mathematics University of Michigan Joint work with Robert Buckingham (Cincinnati). Thanks to the National Science Foundation for much support.

Hamiltonian PDEs, Frobenius Manifolds, and Deligne-Mumford Moduli Spaces, SISSA, Trieste, September 18, 2013

Semiclassical limit for pure-impulse initial data.

Consider the following Cauchy problem for $u^{\epsilon} = u^{\epsilon}(x, t)$:

$$\epsilon^2 u_{tt}^{\epsilon} - \epsilon^2 u_{xx}^{\epsilon} + \sin(u^{\epsilon}) = 0, \quad x \in \mathbb{R}, \quad t > 0,$$

 $u^{\epsilon}(x,0) = F(x), \qquad \epsilon u^{\epsilon}_t(x,0) = G(x).$

Here $\epsilon > 0$ is a parameter, and *F* and *G* are independent of ϵ .

- Suppose that this Cauchy problem has a unique solution u^ε(x, t) for all sufficiently small ε > 0. What can be said about the asymptotic behavior of u^ε(x, t) in the limit ε ↓ 0?
- Analyzing this kind of asymptotic question is what it means to study the *semiclassical limit for the sine-Gordon Cauchy problem* in laboratory coordinates.
- For convenience, we consider only *pure impulse* initial data, *i.e.* $F(\cdot) \equiv 0$.

Impulse threshold for rotation.

The sine-Gordon equation as a perturbed simple pendulum:

$$u_{TT}^{\epsilon} + \sin(u^{\epsilon}) = \epsilon^2 u_{xx}^{\epsilon}, \quad u^{\epsilon}(x,0) = F(x), \quad u_T^{\epsilon}(x,0) = G(x),$$

where $t = \epsilon T$. The unperturbed problem conserves total energy

$$E = \frac{1}{2}(u_T^{\epsilon})^2 + (1 - \cos(u^{\epsilon})) = \frac{1}{2}G(x)^2$$
, if $F \equiv 0$.

For T = O(1), the pendulum at *x* undergoes approximate

- librational motion ($|u^{\epsilon}| < \pi$) if E = E(x) < 2
- rotational motion (u^{ϵ} growing without bound) if E = E(x) > 2.

Therefore, a sufficiently strong initial impulse profile should produce both types of motion separated by values $x = x_{crit}$ where $G(x_{crit}) = \pm 2$.

This basic picture has been confirmed rigorously for a wide variety of initial impulse profiles G.

《曰》 《聞》 《臣》 《臣》 三臣 …

$$G(x) = -3 \operatorname{sech}(x) \qquad (x,t) \in (-2.5, 2.5) \times (0,5)$$

$$\epsilon = 0.1875$$

This basic picture has been confirmed rigorously for a wide variety of initial impulse profiles G.

(日) (四) (三) (三) (三)

This basic picture has been confirmed rigorously for a wide variety of initial impulse profiles G.

< □ > < □ > < □ > < □ > < □ > < □ >

This basic picture has been confirmed rigorously for a wide variety of initial impulse profiles G.

This basic picture has been confirmed rigorously for a wide variety of initial impulse profiles G.

R. Buckingham and P. D. Miller, J. d'Anal. Math., 118, 397-492, 2012.

Consider the behavior of $u^{\epsilon}(x, t)$ near a point $x = x_{crit}$ where the initial data crosses the pendulum separatrix at t = 0:

Let $\nu := [12G'(x_{\operatorname{crit}})]^{-1} > 0$ and set $\Delta x := x - x_{\operatorname{crit}}$.

R. Buckingham and P. D. Miller, J. d'Anal. Math., 118, 397-492, 2012.

Set $U_0(y) := 1$ and $V_0(y) := -y/6$. Generate $\{U_m, V_m\}_{m \in \mathbb{Z}}$ by the recursions

$$\mathcal{U}_{m+1}(y) := -\frac{1}{6}y\mathcal{U}_m(y) - \frac{\mathcal{U}_m'(y)^2}{\mathcal{U}_m(y)} + \frac{1}{2}\mathcal{U}_m''(y) \text{ and } \mathcal{V}_{m+1}(y) := \frac{1}{\mathcal{U}_m(y)}$$

$$\mathcal{U}_{m-1}(y) := \frac{1}{\mathcal{V}_m(y)}$$
 and $\mathcal{V}_{m-1}(y) := \frac{1}{2}\mathcal{V}_m'(y) - \frac{\mathcal{V}_m'(y)^2}{\mathcal{V}_m(y)} - \frac{1}{6}y\mathcal{V}_m(y).$

It turns out that $(U, V) = (U_m, V_m)$ satisfy for each *m* the coupled system of second-order Painlevé II-type equations

$$\mathcal{U}''(y) + 2\mathcal{U}(y)^2 \mathcal{V}(y) + \frac{1}{3} y \mathcal{U}(y) = 0$$

$$\mathcal{V}''(y) + 2\mathcal{U}(y) \mathcal{V}(y)^2 + \frac{1}{3} y \mathcal{V}(y) = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

R. Buckingham and P. D. Miller, J. d'Anal. Math., 118, 397-492, 2012.

Fix an integer *m* and assume that (x, t) lies in the horizontal strip S_m in the (x, t)-plane given by the inequality

$$\left|t-\frac{2}{3}m\epsilon\log(\epsilon^{-1})\right|\leq \frac{1}{3}\epsilon\log(\epsilon^{-1}).$$

Suppose also that $\Delta x = \mathcal{O}(\epsilon^{2/3})$. Then as $\epsilon \to 0$,

$$\cos(\frac{1}{2}u^{\epsilon}(x,t)) = (-1)^{m}\operatorname{sgn}(\mathcal{U}_{m}(y))\operatorname{sech}(T) + o(1)$$

$$\sin(\frac{1}{2}u^{\epsilon}(x,t)) = (-1)^{m+1}\operatorname{tanh}(T) + o(1)$$

where

$$T := \frac{t}{\epsilon} - 2m \log\left(\frac{4\nu^{1/3}}{\epsilon^{1/3}}\right) + \log|\mathcal{U}_m(y)|, \quad \text{and} \quad y := \frac{\Delta x}{2\nu^{1/3}\epsilon^{2/3}}.$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

R. Buckingham and P. D. Miller, J. d'Anal. Math., 118, 397-492, 2012.

The leading terms determine a limiting function u(T) modulo 2π :

 $\cos(u(T)) := 2 \operatorname{sech}^2(T) - 1$ and $\sin(u(T)) := -2\sigma \operatorname{sech}(T) \tanh(T)$,

and u(T) is an X-independent solution of the unscaled equation

$$u_{TT} - u_{XX} + \sin(u) = 0.$$

This exact solution represents a superluminal (infinite velocity) kink with unit magnitude *topological charge* $\sigma := sgn(\mathcal{U}_m(y))$.

The Sine-Gordon Equation R. Buckingham and P. D. Miller, *J. d'Anal. Math.*, **118**, 397–492, 2012

The kink is slowly modulated in the direction parallel to the wavefront; the center (T = 0) is located along a vertical translate of the graph of $-\log |\mathcal{U}_m(y)|$:

The strips S_0, \ldots, S_6 in the (y, t)-plane for $\epsilon = 10^{-5}$ and $4\nu^{1/3} = 1$, and the curve T = 0 in each strip. Note the left-right asymmetry of the pattern.

<ロト <回ト < 国ト < 国ト = 国

Relation to the inhomogeneous Painlevé-II equation.

The logarithmic derivatives

$$\mathcal{P}_m(y) := rac{\mathcal{U}_m'(y)}{\mathcal{U}_m(y)}$$
 and $\mathcal{Q}_m(y) := rac{\mathcal{V}_m'(y)}{\mathcal{V}_m(y)}$

satisfy uncoupled equations:

$$\mathcal{P}_m''(y) = 2\mathcal{P}_m(y)^3 + \frac{2}{3}y\mathcal{P}_m(y) - \frac{2}{3}m$$

$$\mathcal{Q}_m''(y) = 2\mathcal{Q}_m(y)^3 + \frac{2}{3}y\mathcal{Q}_m(y) + \frac{2}{3}(m-1).$$

There exists a unique rational solution to the inhomogeneous Painlevé-II equation (PII- α)

$$\mathcal{P}''(y) = 2\mathcal{P}(y)^3 + \frac{2}{3}y\mathcal{P}(y) + \frac{2}{3}\alpha, \quad \alpha \in \mathbb{C}$$

iff $\alpha \in \mathbb{Z}$ (Y. Murata, 1985). Thus *all* such solutions arise in this way.

History & applications.

The functions $\mathcal{P}_m(y)$ appear to have been discovered as solutions of PII- α for $\alpha = m \in \mathbb{Z}$ via Bäcklund transformations by Airault (1979).

The functions $\mathcal{P}_m(y)$ are known to be important in several applications:

- Their singularities describe equilibrium configurations of interacting fluid vortices in the plane. (P. Clarkson, 2009)
- They appear in string theory. (C. Johnson, 2006).
- The related functions $\mathcal{U}_m(y)$ describe the universal wave pattern near a simple crossing of the pendulum separatrix in the semiclassical sine-Gordon equation.

Key point: in the latter application the question of the large-|m| asymptotic behavior of the rational Painlevé-II functions is natural. It is associated with understanding how the universal wave pattern near the critical point matches onto the larger-time dynamics of sine-Gordon.

Poles and zeros.

The real poles and zeros of $U_m(y)$ are important in part because they locate the grazing collisions of the kinks.

More insight can be gained by looking in the complex y-plane...

イロト イヨト イヨト イヨト

- 2

Poles and zeros.

The functions $U_m(y)$ are ratios of consecutive *Yablonskii-Vorob'ev polynomials*. The complex zeros of these polynomials were studied numerically by Clarkson and Mansfield (2003).

Red/black dots: poles/zeros. These pictures suggest an explanation for the left-right asymmetry of the universal wave pattern.

Flaschka-Newell isomonodromy theory.

Flaschka and Newell (1980) considered the Lax pair:

$$\frac{\partial \mathbf{v}}{\partial \zeta} = \begin{bmatrix} -i(4\zeta^2 + x + 2q^2) & 4\zeta q - 2ir + \nu\zeta^{-1} \\ 4\zeta q + 2ir + \nu\zeta^{-1} & i(4\zeta^2 + x + 2q^2) \end{bmatrix} \mathbf{v}, \quad \frac{\partial \mathbf{v}}{\partial x} = \begin{bmatrix} -i\zeta & q \\ q & i\zeta \end{bmatrix} \mathbf{v}$$

for which the compatibility condition is $q''(x) = 2q^3 + xq - \nu$. Note that

$$\mathcal{P} = (\frac{2}{3})^{1/3} q, \quad y = (\frac{3}{2})^{1/3} x, \quad \alpha = -\nu \quad \Longrightarrow \quad \mathsf{PII-}\alpha \text{ for } \mathcal{P}(y).$$

In this setting, the rational solutions $\mathcal{P}_m(y)$ for $\alpha = m \in \mathbb{Z}$ correspond to the case that *all Stokes multipliers are zero*. The inverse monodromy problem amounts to the construction of a meromorphic matrix function of ζ with only one pole of order |m| at $\zeta = 0$ with given exponential behavior at $\zeta = \infty$, i.e. a Riemann-Hilbert problem *without jumps* solvable by determinants. The rational functions $\mathcal{P}_m(y)$ are the *solitons* of PII.

Alternative Jimbo-Miwa theory.

Encoding the rational functions $\mathcal{P}_m(y)$ in terms of a Riemann-Hilbert problem with jumps instead of poles is preferable for asymptotic analysis in the limit $\alpha = m \rightarrow \infty$.

Luckily, such a representation is exactly what comes out of sine-Gordon: a Riemann-Hilbert problem with jumps and no poles characterizing $\mathcal{P}_m(y)$ (as well as $\mathcal{U}_m(y)$) related to the Lax pair found by Jimbo and Miwa (1981):

$$\frac{\partial \mathbf{v}}{\partial \zeta} = \frac{1}{2} \begin{bmatrix} -3\zeta^2 - 6\mathcal{U}\mathcal{V} - y & 6\mathcal{U}\zeta + 2\mathcal{W} \\ -6\mathcal{V}\zeta - 2\mathcal{Z} & 3\zeta^2 + 6\mathcal{U}\mathcal{V} + y \end{bmatrix} \mathbf{v}, \quad \frac{\partial \mathbf{v}}{\partial y} = \frac{1}{2} \begin{bmatrix} -\zeta & 2\mathcal{U} \\ -2\mathcal{V} & \zeta \end{bmatrix} \mathbf{v}$$

with compatibility conditions

$$\begin{aligned} \mathcal{W}(y) &= -3\mathcal{U}'(y), \qquad \mathcal{W}'(y) = 6\mathcal{U}(y)^2\mathcal{V}(y) + y\mathcal{U}(y), \\ \mathcal{Z}(y) &= 3\mathcal{V}'(y), \qquad \mathcal{Z}'(y) = -6\mathcal{U}(y)\mathcal{V}(y)^2 - y\mathcal{V}(y). \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The sine-Gordon inverse-scattering problem can be written as a matrix Riemann-Hilbert problem: given a contour $\Sigma \subset \mathbb{C}$ and a matrix function $V : \Sigma \to SL(2, \mathbb{C})$, find $\mathbf{M} : \mathbb{C} \setminus \Sigma \to SL(2, \mathbb{C})$ such that:

• $\mathbf{M}_+(w) = \mathbf{M}_-(w)\mathbf{V}(w)$ holds at each point of Σ and

•
$$\mathbf{M}(w) \to \mathbb{I}$$
 as $w \to \infty$.

After some systematic preparations (introduction of g-function, Deift-Zhou steepest descent method) this problem is converted into another equivalent one in which:

- As *ϵ* → 0, V(*w*) converges uniformly to something simple except near one point, *w* = *w*_{*} ≈ −1.
- Away from w_* there is an obvious approximate solution indexed by an arbitrary parameter $m \in \mathbb{Z}$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

For $w \approx w_*$, the jump matrices V(w) don't converge uniformly:

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The exponent function k(w) = k(w; x, t) is globally complicated, but is approximately cubic near w_* when $x \approx x_{crit}$ and $t \approx 0$. By Chester, Friedman, and Ursell (1957), there are analytic spacetime coordinates $r(x,t) \approx \Delta x/(2\nu^{1/3})$ and $s(x,t) \approx t$ such that k(w) = k(w; x, t) is exactly a cubic polynomial in a new variable ζ :

$$\frac{k(w)}{\epsilon} = \zeta^3 + y\zeta - \frac{s}{\epsilon}, \quad \zeta := \frac{W(w)}{\epsilon^{1/3}}, \quad y := \frac{r}{\epsilon^{2/3}}.$$

The large constant term in the cubic can be removed by an explicit transformation. The value of *m* indexing the "outer" approximation has to be matched to the value of *s*; this leads to the necessity of introducing the coordinate strips S_m .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The problem reduces to the following *parametrix* RHP for $\mathbf{Z}_m(\zeta; y)$:

Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

- Let $\mathbf{L}_m := \mathbf{Z}_m e^{-(\zeta^3 + y\zeta)\sigma_3/2}$.
 - This transformation removes all exponential factors from the jump matrices. It follows that

$$\mathbf{U}_m := \frac{\partial \mathbf{L}_m}{\partial y} \mathbf{L}_m^{-1}$$
 and $\mathbf{V}_m := \frac{\partial \mathbf{L}_m}{\partial \zeta} \mathbf{L}_m^{-1}$

are both entire functions of ζ .

- Prescribed behavior of \mathbb{Z}_m as $\zeta \to \infty$ implies that \mathbb{U}_m and \mathbb{V}_m are polynomials of degree 1 and 2 respectively. The coefficients in these polynomials come from the large- ζ expansion of \mathbb{Z}_m .
- Therefore, L_m satisfies the overdetermined linear system

$$rac{\partial \mathbf{L}_m}{\partial y} = \mathbf{U}_m \mathbf{L}_m \quad ext{and} \quad rac{\partial \mathbf{L}_m}{\partial \zeta} = \mathbf{V}_m \mathbf{L}_m.$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

This is precisely the Jimbo-Miwa Lax pair.

Basic approach to large-*m* asymptotics.

We analyze the parametrix RHP for $\mathbb{Z}_m(\zeta; y)$ in the limit $m \to \infty$ using the *Deift-Zhou steepest descent method*. Note that for each fixed $m \in \mathbb{Z}$, we have the exact formulae:

$$\mathcal{U}_m(y) = A_{m,12}(y)$$
 and $\mathcal{P}_m(y) = A_{m,22}(y) - \frac{B_{m,12}(y)}{A_{m,12}(y)}$

where the matrices $A_m(y)$ and $B_m(y)$ are obtained from the expansion:

$$\mathbf{Z}_m(\zeta; y)(-\zeta)^{(1-2m)\sigma_3/2} = \mathbb{I} + \mathbf{A}_m(y)\zeta^{-1} + \mathbf{B}_m(y)\zeta^{-2} + \mathcal{O}(\zeta^{-3}), \quad \zeta \to \infty.$$

We scale:
$$z := (m - \frac{1}{2})^{-1/3}\zeta$$
 and $x := (m - \frac{1}{2})^{-2/3}y$.

Some asymptotic features of the functions $U_m(y)$ and $\mathcal{P}_m(y)$ resemble those of more general solutions of PII- α in the limit of large α obtained by Kapaev (1997) by means of the *isomonodromy method*, an important precursor of the steepest descent method.

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

Formulae valid for sufficiently large |x|. One-cut/genus-zero analysis.

The cubic equation $3S^3 + 4xS + 8 = 0$ has a unique solution S = S(x) that is analytic for $x \in \mathbb{C} \setminus \Sigma_S$ where Σ_S is the contour

Note that $S(x) = -2x^{-1} + O(x^{-4})$ as $x \to \infty$ and S(x) is real for $x \in \mathbb{R}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ��

Formulae valid for sufficiently large |x|. One-cut/genus-zero analysis.

Theorem

There exists a piecewise-analytic simple closed curve ∂T such that uniformly for $x = y/(m - \frac{1}{2})^{2/3}$ bounded outside ∂T (and also for x as close as $\log(m)/m$ from an edge — but not a corner), as $m \to +\infty$,

$$\begin{split} m^{-2m/3} e^{-m\lambda(x)} \mathcal{U}_m &= \dot{\mathcal{U}}(x) + \mathcal{O}(m^{-1}), \quad \dot{\mathcal{U}}(x) := e^{xS(x)/6}, \\ m^{-1/3} \mathcal{P}_m &= \dot{\mathcal{P}}(x) + \mathcal{O}(m^{-1}), \quad \dot{\mathcal{P}}(x) := -\frac{1}{2}S(x), \end{split}$$

where the normalizing exponent for \mathcal{U} is $\lambda(x) := \frac{1}{4}S(x)^3 - \log(3S(x))$.

Poles and zeros of $U_m(y)$ in the *x*-plane for m = 20 and the curve ∂T . The opening angle of ∂T at each corner is exactly $2\pi/5$. ∂T is (part of) the zero locus of an explicit (in *S*) harmonic function.

Asymptotic Description of U_m and \mathcal{P}_m for Large *m* Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Boutroux ansatz method: Let x_0 be a fixed complex number and set

$$y = (m - \frac{1}{2})^{2/3}(x_0 + (m - \frac{1}{2})^{-1}w).$$

Writing $\mathcal{P}_m(y) = (m - \frac{1}{2})^{1/3}q(w)$ converts the exact equation

$$\mathcal{P}_m''(y) = 2\mathcal{P}_m(y)^3 + \frac{2}{3}y\mathcal{P}_m(y) - \frac{2}{3}m$$

into the form

$$q''(w) = 2q(w)^3 + \frac{2}{3}x_0q(w) - \frac{2}{3} + (m - \frac{1}{2})^{-1} \left[\frac{2}{3}wq(w) - \frac{1}{3}\right]$$

Neglecting the formally small final term results in an equation solved by elliptic functions with modulus depending on x_0 . This turns out to be a valid approximation, as long as x_0 lies within the interior of *T*, the "elliptic region".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Theorem

m

There exists a smooth but non-analytic function $\Lambda : T \to \mathbb{C}$ such that with $y = (m - \frac{1}{2})^{2/3}x$ and $x = x_0 + (m - \frac{1}{2})^{-1}w$, as $m \to +\infty$,

$${}^{-2m/3}e^{-m\Lambda(x)}\mathcal{U}_m = rac{\dot{\mathcal{U}}_m(w;x_0)}{1 + \mathcal{O}(m^{-1}\dot{\mathcal{U}}_m(w;x_0))},$$
 $m^{-1/3}\mathcal{P}_m = rac{\dot{\mathcal{P}}_m(w;x_0)}{1 + \mathcal{O}(m^{-1}\dot{\mathcal{P}}_m(w;x_0))},$

both hold uniformly for x_0 in compact subsets of T and w bounded, where $\dot{\mathcal{U}}_m(w; x_0)$ and $\dot{\mathcal{P}}_m(w; x_0)$ are explicitly constructed in terms of the Riemann theta function associated with a uniquely determined elliptic curve $\Gamma(x_0)$.

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Some notes:

- For each $x_0 \in T$, $\dot{\mathcal{P}}_m(w; x_0)$ is an elliptic function of *w* that solves the Boutroux ansatz differential equation.
- Accuracy even near poles is obtained using Bäcklund transformations.
- Pole/zero locations accurate to $\mathcal{O}(m^{-2})$ in *x*; spacing scales as m^{-1} .
- Interpretation of two-variable approximations:
 - x_0 is a coordinate on the base manifold *T*. Setting w = 0 gives a *uniform approximation* that is not meromorphic in $x_0 = x$.
 - *w* is a coordinate on the tangent space to *T* at *x*₀. Fixing *x*₀ and varying *w* gives a *tangent approximation* that is meromorphic in *w* but only locally accurate.

Asymptotic Description of U_m and \mathcal{P}_m for Large *m* Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Plots of $\frac{2}{\pi} \arctan(|\dot{\mathcal{U}}_m(0;x)|)$ with zeros (\circ) and poles (*) of \mathcal{U}_m .

500

æ

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

From our approximate formulae:

We prove that the function m^{-1/3}P_m((m - 1/2)^{2/3}x) converges to a continuous limit Ṗ_{macro}(x) in the distributional topology of D'(C \ ∂T), as well as in the (suitably PV-regularized) distributional topology of D'(R \ {x_c, x_e}), where (x_c, x_e) = T ∩ R.

Note $\overline{\partial} \dot{\mathcal{P}}_{macro}(x) \neq 0$ for $x \in T$.

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

From our approximate formulae:

We calculate the asymptotic planar density (at *x* ∈ *T*) and linear density (at *x* ∈ *T* ∩ ℝ) of poles of *U_m*. Taking out a factor of *m*², these are:

 $\sigma_{\rm P}(x)$ is inversely proportional to the real area of the Jacobian of $\Gamma(x)$. $\sigma_{\rm L}(x)$ is inversely proportional to the real period of the elliptic function $\dot{\mathcal{P}}_m$ as a function of *w*.

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Quantitative comparison for $x \in T \cap \mathbb{R}$ of $m^{-2m/3}e^{-m\Lambda(x)}\mathcal{U}_m((m-\frac{1}{2})^{2/3}x)$, the uniform approximation $\dot{\mathcal{U}}_m(0;x)$, and the tangent approximation based at the origin $\dot{\mathcal{U}}_m((m-\frac{1}{2})x;0)$:

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ��

Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Quantitative comparison for $x \in T \cap \mathbb{R}$ of $m^{-1/3}\mathcal{P}_m((m-\frac{1}{2})^{2/3}x)$, the uniform approximation $\dot{\mathcal{P}}_m(0;x)$, the tangent approximation based at the origin $\dot{\mathcal{P}}_m((m-\frac{1}{2})x;0)$, and the weak limit $\dot{\mathcal{P}}_{macro}(x)$:

Formulae valid near an edge. Hermite parametrix plus "improvement".

Each of the three smooth arcs of ∂T has a representation of the form $\Re\{f_k(x)\} = 0, k = 0, \pm 1$, where $f_{\pm 1}(x) = f_0(e^{\pm 2\pi i/3}x)$, and where $f_0(x)$ is analytic for $|\arg(x)| < \pi/3$. The relation $c = f_0(x)$ defines a conformal map taking the arc of ∂T with $|\arg(x)| < \pi/3$ to the segment of the imaginary axis in the *c*-plane with $-2\pi < \Im\{c\} < 0$:

Formulae valid near an edge. Hermite parametrix plus "improvement".

Theorem

Assume that $\Re\{c(x)\} = O(m^{-1}\log(m))$ and that $-2\pi < \alpha \le \Im\{c(x)\} \le \beta < 0$. Then U_m and \mathcal{P}_m are approximated by explicit trigonometric formulae, and there exists a family of functions $d_K(x)$ such that the poles of U_m are approximated by

$$c(x) = -(K + \frac{1}{2})m^{-1}\log(m) + m^{-1}d_K(x) + 2\pi i j m^{-1}, \quad j \in \mathbb{Z}, \quad K = 0, 1, 2, 3, .$$

Thus, the poles lie approximately along the vertical lines $\Re\{c\} = -(K + \frac{1}{2})m^{-1}\log(m)$. Moreover, the poles are "staggered" in both *K* and *m*, and the staggering effect weakens as $\Im\{c\}$ approaches -2π or 0, that is, as *x* approaches a corner of *T*.

Formulae valid near a corner. Painlevé-I tritronquée parametrix.

Here are results are formulated in terms of the famous *tritronquée* solution $y_{TT}(v)$ of the Painlevé-I equation (PI):

$$y''(v) = 6y(v)^2 - v.$$

The solution $y_{TT}(v)$ is distinguished by its asymptotic behavior:

$$y_{\mathrm{TT}}(v) = \left(\frac{v}{6}\right)^{1/2} + \mathcal{O}(v^{-2}), \quad v \to \infty, \quad |\arg(v)| < \frac{4\pi}{5}.$$

All solutions of PI have double poles as their only singularities. The *Hamiltonian* associated to each solution y(v) and defined by

$$H(v) := \frac{1}{2}y'(v)^2 + vy(v) - 2y(v)^3$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Has only simple poles. Let $H_{TT}(v)$ denote the Hamiltonian of the tritronquée solution $y_{TT}(v)$.

Asymptotic Description of U_m and \mathcal{P}_m for Large *m* Formulae valid near a corner. Painlevé-I tritronguée parametrix.

The negative real corner of *T* is the point $x_c = -(9/2)^{2/3}$.

Theorem

There exists a function $\hat{\lambda}(x)$ analytic at x_c , such that with $v = -2^{1/15}3^{-1/3}m^{4/5}(x-x_c)$,

$$\mathcal{U}_{m} = m^{2m/3} e^{m\hat{\lambda}(x)} 6^{-1/3} e^{-\hat{\lambda}(x_{c})/2 - 1/3} \cdot \left[1 + 2^{2/5} H_{\text{TT}}(v) m^{-1/5} + \mathcal{O}(m^{-2/5}) \right]$$
$$\mathcal{P}_{m} = -m^{1/3} 6^{-1/3} \cdot \left[1 + 2^{12/5} H_{\text{TT}}(v) m^{-1/5} + \mathcal{O}(m^{-2/5}) \right]$$

both hold uniformly for v = O(1) such that v is also bounded away from all poles of $H_{TT}(v)$.

Conclusion

- In a semiclassical multi-scaling limit solutions to the sine-Gordon equation with initial data crossing the pendulum separatrix exhibit a universal structure near the crossing points. Superluminal kinks are centered along the real graphs of the rational functions U_m associated with the Painlevé-II- α equation.
- The rational PII-α functions are "solitons" from the point of view of the Flaschka-Newell theory, but they can be obtained from the Jimbo-Miwa theory by means of a Riemann-Hilbert problem with jumps along contours rather than poles.
- The latter formulation makes possible the extraction of detailed asymptotic formulae (also effective for numerical computation) for \mathcal{U}_m and \mathcal{P}_m in the limit of large *m* by the steepest descent method.

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion

- In a semiclassical multi-scaling limit solutions to the sine-Gordon equation with initial data crossing the pendulum separatrix exhibit a universal structure near the crossing points. Superluminal kinks are centered along the real graphs of the rational functions U_m associated with the Painlevé-II- α equation.
- The rational PII-α functions are "solitons" from the point of view of the Flaschka-Newell theory, but they can be obtained from the Jimbo-Miwa theory by means of a Riemann-Hilbert problem with jumps along contours rather than poles.
- The latter formulation makes possible the extraction of detailed asymptotic formulae (also effective for numerical computation) for \mathcal{U}_m and \mathcal{P}_m in the limit of large *m* by the steepest descent method.

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで