
The Semiclassical Sine-Gordon Equation and
Rational Solutions of Painlevé-II

Peter D. Miller

Department of Mathematics
University of Michigan

Joint work with Robert Buckingham (Cincinnati). Thanks to the National Science Foundation
for much support.

Hamiltonian PDEs, Frobenius Manifolds, and Deligne-Mumford
Moduli Spaces, SISSA, Trieste, September 18, 2013



The Sine-Gordon Equation
Semiclassical limit for pure-impulse initial data.

Consider the following Cauchy problem for uε = uε(x, t):

ε2uεtt − ε2uεxx + sin(uε) = 0, x ∈ R, t > 0,

uε(x, 0) = F(x), εuεt (x, 0) = G(x).

Here ε > 0 is a parameter, and F and G are independent of ε.
Suppose that this Cauchy problem has a unique solution uε(x, t)
for all sufficiently small ε > 0. What can be said about the
asymptotic behavior of uε(x, t) in the limit ε ↓ 0?
Analyzing this kind of asymptotic question is what it means to
study the semiclassical limit for the sine-Gordon Cauchy problem
in laboratory coordinates.
For convenience, we consider only pure impulse initial data, i.e.
F(·) ≡ 0.



The Sine-Gordon Equation
Impulse threshold for rotation.

The sine-Gordon equation as a perturbed simple pendulum:

uεTT + sin(uε) = ε2uεxx, uε(x, 0) = F(x), uεT(x, 0) = G(x),

where t = εT. The unperturbed problem conserves total energy

E = 1
2(uεT)2 + (1− cos(uε)) = 1

2 G(x)2, if F ≡ 0.

For T = O(1), the pendulum at x undergoes approximate
librational motion (|uε| < π) if E = E(x) < 2

rotational motion (uε growing without bound) if E = E(x) > 2.
Therefore, a sufficiently strong initial impulse profile should produce
both types of motion separated by values x = xcrit where G(xcrit) = ±2.



The Sine-Gordon Equation
R. Buckingham and P. D. Miller, Mem. AMS, 225, 1–152, 2013.

This basic picture has been confirmed rigorously for a wide variety of
initial impulse profiles G.
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Consider the behavior of uε(x, t) near a point x = xcrit where the initial
data crosses the pendulum separatrix at t = 0:

Let ν := [12G′(xcrit)]
−1 > 0 and set ∆x := x− xcrit.



The Sine-Gordon Equation
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Set U0(y) := 1 and V0(y) := −y/6. Generate {Um,Vm}m∈Z by the
recursions

Um+1(y) := −1
6

yUm(y)− U
′
m(y)2

Um(y)
+

1
2
U ′′m(y) and Vm+1(y) :=

1
Um(y)

Um−1(y) :=
1
Vm(y)

and Vm−1(y) :=
1
2
V ′′m(y)− V

′
m(y)2

Vm(y)
− 1

6
yVm(y).

It turns out that (U ,V) = (Um,Vm) satisfy for each m the coupled
system of second-order Painlevé II-type equations

U ′′(y) + 2U(y)2V(y) +
1
3

yU(y) = 0

V ′′(y) + 2U(y)V(y)2 +
1
3

yV(y) = 0.



The Sine-Gordon Equation
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Fix an integer m and assume that (x, t) lies in the horizontal strip Sm in
the (x, t)-plane given by the inequality∣∣∣∣t − 2

3
mε log(ε−1)

∣∣∣∣ ≤ 1
3
ε log(ε−1).

Suppose also that ∆x = O(ε2/3). Then as ε→ 0,

cos(1
2 uε(x, t)) = (−1)msgn(Um(y)) sech(T) + o(1)

sin(1
2 uε(x, t)) = (−1)m+1 tanh(T) + o(1)

where

T :=
t
ε
− 2m log

(
4ν1/3

ε1/3

)
+ log |Um(y)|, and y :=

∆x
2ν1/3ε2/3 .



The Sine-Gordon Equation
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The leading terms determine a limiting function u(T) modulo 2π:

cos(u(T)) := 2 sech2(T)− 1 and sin(u(T)) := −2σ sech(T) tanh(T),

and u(T) is an X-independent solution of the unscaled equation

uTT − uXX + sin(u) = 0.

This exact solution represents a superluminal (infinite velocity) kink
with unit magnitude topological charge σ := sgn(Um(y)).

cos(u(T)) sin(u(T))



The Sine-Gordon Equation
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The kink is slowly modulated in the direction parallel to the wavefront;
the center (T = 0) is located along a vertical translate of the graph of
− log |Um(y)|:

The strips S0, . . . , S6 in the (y, t)-plane for ε = 10−5 and 4ν1/3 = 1, and
the curve T = 0 in each strip.
Note the left-right asymmetry of the pattern.



Rational Painlevé-II Functions
Relation to the inhomogeneous Painlevé-II equation.

The logarithmic derivatives

Pm(y) :=
U ′m(y)

Um(y)
and Qm(y) :=

V ′m(y)

Vm(y)

satisfy uncoupled equations:

P ′′m(y) = 2Pm(y)3 +
2
3

yPm(y)− 2
3

m

Q′′m(y) = 2Qm(y)3 +
2
3

yQm(y) +
2
3

(m− 1).

There exists a unique rational solution to the inhomogeneous
Painlevé-II equation (PII-α)

P ′′(y) = 2P(y)3 +
2
3

yP(y) +
2
3
α, α ∈ C

iff α ∈ Z (Y. Murata, 1985). Thus all such solutions arise in this way.



Rational Painlevé-II Functions
History & applications.

The functions Pm(y) appear to have been discovered as solutions of
PII-α for α = m ∈ Z via Bäcklund transformations by Airault (1979).

The functions Pm(y) are known to be important in several applications:
Their singularities describe equilibrium configurations of
interacting fluid vortices in the plane. (P. Clarkson, 2009)
They appear in string theory. (C. Johnson, 2006).
The related functions Um(y) describe the universal wave pattern
near a simple crossing of the pendulum separatrix in the
semiclassical sine-Gordon equation.

Key point: in the latter application the question of the large-|m|
asymptotic behavior of the rational Painlevé-II functions is natural. It is
associated with understanding how the universal wave pattern near the
critical point matches onto the larger-time dynamics of sine-Gordon.



Rational Painlevé-II Functions
Poles and zeros.

The real poles and zeros of Um(y) are important in part because they
locate the grazing collisions of the kinks.
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Rational Painlevé-II Functions
Poles and zeros.

The functions Um(y) are ratios of consecutive Yablonskii-Vorob’ev
polynomials. The complex zeros of these polynomials were studied
numerically by Clarkson and Mansfield (2003).
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Red/black dots: poles/zeros. These pictures suggest an explanation
for the left-right asymmetry of the universal wave pattern.



Techniques of Asymptotic Analysis
Flaschka-Newell isomonodromy theory.

Flaschka and Newell (1980) considered the Lax pair:

∂v
∂ζ

=

[
−i(4ζ2 + x + 2q2) 4ζq− 2ir + νζ−1

4ζq + 2ir + νζ−1 i(4ζ2 + x + 2q2)

]
v,

∂v
∂x

=

[
−iζ q

q iζ

]
v

for which the compatibility condition is q′′(x) = 2q3 + xq− ν. Note that

P = (2
3)1/3q, y = (3

2)1/3x, α = −ν =⇒ PII-α for P(y).

In this setting, the rational solutions Pm(y) for α = m ∈ Z correspond to
the case that all Stokes multipliers are zero. The inverse monodromy
problem amounts to the construction of a meromorphic matrix function
of ζ with only one pole of order |m| at ζ = 0 with given exponential
behavior at ζ =∞, i.e. a Riemann-Hilbert problem without jumps
solvable by determinants. The rational functions Pm(y) are the solitons
of PII.



Techniques of Asymptotic Analysis
Alternative Jimbo-Miwa theory.

Encoding the rational functions Pm(y) in terms of a Riemann-Hilbert
problem with jumps instead of poles is preferable for asymptotic
analysis in the limit α = m→∞.

Luckily, such a representation is exactly what comes out of
sine-Gordon: a Riemann-Hilbert problem with jumps and no poles
characterizing Pm(y) (as well as Um(y)) related to the Lax pair found by
Jimbo and Miwa (1981):

∂v
∂ζ

=
1
2

[
−3ζ2 − 6UV − y 6Uζ + 2W
−6Vζ − 2Z 3ζ2 + 6UV + y

]
v,

∂v
∂y

=
1
2

[
−ζ 2U
−2V ζ

]
v

with compatibility conditions

W(y) = −3U ′(y), W ′(y) = 6U(y)2V(y) + yU(y),

Z(y) = 3V ′(y), Z ′(y) = −6U(y)V(y)2 − yV(y).



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The sine-Gordon inverse-scattering problem can be written as a matrix
Riemann-Hilbert problem: given a contour Σ ⊂ C and a matrix function
V : Σ→ SL(2,C), find M : C \ Σ→ SL(2,C) such that:

M+(w) = M−(w)V(w) holds at each point of Σ and
M(w)→ I as w→∞.

After some systematic preparations (introduction of g-function,
Deift-Zhou steepest descent method) this problem is converted into
another equivalent one in which:

As ε→ 0, V(w) converges uniformly to something simple except
near one point, w = w∗ ≈ −1.
Away from w∗ there is an obvious approximate solution indexed by
an arbitrary parameter m ∈ Z.



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

For w ≈ w∗, the jump matrices V(w) don’t converge uniformly:



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The exponent function k(w) = k(w; x, t) is globally complicated, but is
approximately cubic near w∗ when x ≈ xcrit and t ≈ 0. By Chester,
Friedman, and Ursell (1957), there are analytic spacetime coordinates
r(x, t) ≈ ∆x/(2ν1/3) and s(x, t) ≈ t such that k(w) = k(w; x, t) is exactly a
cubic polynomial in a new variable ζ:

k(w)

ε
= ζ3 + yζ − s

ε
, ζ :=

W(w)

ε1/3 , y :=
r
ε2/3 .

The large constant term in the cubic can be removed by an explicit
transformation. The value of m indexing the “outer” approximation has
to be matched to the value of s; this leads to the necessity of
introducing the coordinate strips Sm.



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

The problem reduces to the following parametrix RHP for Zm(ζ; y):

lim
ζ→∞

Zm(ζ; y)(−ζ)(1−2m)σ3/2 = I



Techniques of Asymptotic Analysis
Semiclassical sine-Gordon origin of Jimbo-Miwa problem.

Let Lm := Zme−(ζ3+yζ)σ3/2.
This transformation removes all exponential factors from the jump
matrices. It follows that

Um :=
∂Lm

∂y
L−1

m and Vm :=
∂Lm

∂ζ
L−1

m

are both entire functions of ζ.
Prescribed behavior of Zm as ζ →∞ implies that Um and Vm are
polynomials of degree 1 and 2 respectively. The coefficients in
these polynomials come from the large-ζ expansion of Zm.
Therefore, Lm satisfies the overdetermined linear system

∂Lm

∂y
= UmLm and

∂Lm

∂ζ
= VmLm.

This is precisely the Jimbo-Miwa Lax pair.



Techniques of Asymptotic Analysis
Basic approach to large-m asymptotics.

We analyze the parametrix RHP for Zm(ζ; y) in the limit m→∞ using
the Deift-Zhou steepest descent method. Note that for each fixed
m ∈ Z, we have the exact formulae:

Um(y) = Am,12(y) and Pm(y) = Am,22(y)− Bm,12(y)

Am,12(y)

where the matrices Am(y) and Bm(y) are obtained from the expansion:

Zm(ζ; y)(−ζ)(1−2m)σ3/2 = I + Am(y)ζ−1 + Bm(y)ζ−2 +O(ζ−3), ζ →∞.

We scale: z := (m− 1
2)−1/3ζ and x := (m− 1

2)−2/3y.

Some asymptotic features of the functions Um(y) and Pm(y) resemble
those of more general solutions of PII-α in the limit of large α obtained
by Kapaev (1997) by means of the isomonodromy method, an
important precursor of the steepest descent method.



Asymptotic Description of Um and Pm for Large m
Formulae valid for sufficiently large |x|. One-cut/genus-zero analysis.

The cubic equation 3S3 + 4xS + 8 = 0 has a unique solution S = S(x)
that is analytic for x ∈ C \ ΣS where ΣS is the contour

x

�
�
�
�
��

A
A
A
A
AA

r( 81
4

)1/3
eiπ/3

r( 81
4

)1/3
e−iπ/3

r0r−
(81

4

)1/3

Note that S(x) = −2x−1 +O(x−4) as x→∞ and S(x) is real for x ∈ R.



Asymptotic Description of Um and Pm for Large m
Formulae valid for sufficiently large |x|. One-cut/genus-zero analysis.

Theorem
There exists a piecewise-analytic simple closed curve ∂T such that
uniformly for x = y/(m− 1

2)2/3 bounded outside ∂T (and also for x as
close as log(m)/m from an edge — but not a corner), as m→ +∞,

m−2m/3e−mλ(x)Um = U̇(x) +O(m−1), U̇(x) := exS(x)/6,

m−1/3Pm = Ṗ(x) +O(m−1), Ṗ(x) := −1
2

S(x),

where the normalizing exponent for U is λ(x) := 1
4 S(x)3 − log(3S(x)).
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Poles and zeros of Um(y) in the x-plane for
m = 20 and the curve ∂T. The opening
angle of ∂T at each corner is exactly 2π/5.
∂T is (part of) the zero locus of an explicit
(in S) harmonic function.



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Boutroux ansatz method: Let x0 be a fixed complex number and set

y = (m− 1
2)2/3(x0 + (m− 1

2)−1w).

Writing Pm(y) = (m− 1
2)1/3q(w) converts the exact equation

P ′′m(y) = 2Pm(y)3 +
2
3

yPm(y)− 2
3

m

into the form

q′′(w) = 2q(w)3 +
2
3

x0q(w)− 2
3

+ (m− 1
2)−1

[
2
3

wq(w)− 1
3

]
.

Neglecting the formally small final term results in an equation solved
by elliptic functions with modulus depending on x0. This turns out to be
a valid approximation, as long as x0 lies within the interior of T, the
“elliptic region”.



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Theorem
There exists a smooth but non-analytic function Λ : T → C such that
with y = (m− 1

2)2/3x and x = x0 + (m− 1
2)−1w, as m→ +∞,

m−2m/3e−mΛ(x)Um =
U̇m(w; x0)

1 +O(m−1U̇m(w; x0))
,

m−1/3Pm =
Ṗm(w; x0)

1 +O(m−1Ṗm(w; x0))
,

both hold uniformly for x0 in compact subsets of T and w bounded,
where U̇m(w; x0) and Ṗm(w; x0) are explicitly constructed in terms of the
Riemann theta function associated with a uniquely determined elliptic
curve Γ(x0).



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Some notes:
For each x0 ∈ T, Ṗm(w; x0) is an elliptic function of w that solves
the Boutroux ansatz differential equation.
Accuracy even near poles is obtained using Bäcklund
transformations.
Pole/zero locations accurate to O(m−2) in x; spacing scales as
m−1.
Interpretation of two-variable approximations:

x0 is a coordinate on the base manifold T. Setting w = 0 gives a
uniform approximation that is not meromorphic in x0 = x.
w is a coordinate on the tangent space to T at x0. Fixing x0 and
varying w gives a tangent approximation that is meromorphic in w
but only locally accurate.



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Plots of 2
π arctan(|U̇m(0; x)|) with zeros (◦) and poles (∗) of Um.

m = 2 m = 3
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m = 6 m = 9
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Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

From our approximate formulae:
We prove that the function m−1/3Pm((m− 1

2)2/3x) converges to a
continuous limit Ṗmacro(x) in the distributional topology of
D ′(C \ ∂T), as well as in the (suitably PV-regularized)
distributional topology of D ′(R \ {xc, xe}), where (xc, xe) = T ∩ R.

Re(Ṗmacro(x)) Im(Ṗmacro(x))
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Note ∂Ṗmacro(x) 6= 0 for x ∈ T.



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

From our approximate formulae:
We calculate the asymptotic planar density (at x ∈ T) and linear
density (at x ∈ T ∩ R) of poles of Um. Taking out a factor of m2,
these are:

Planar Density σP(x) Linear Density σL(x)

x
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xc -2 -1 0 1 xe
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x

σP(x) is inversely proportional to the real area of the Jacobian of
Γ(x). σL(x) is inversely proportional to the real period of the elliptic
function Ṗm as a function of w.



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Quantitative comparison for x ∈ T ∩ R of m−2m/3e−mΛ(x)Um((m− 1
2)2/3x),

the uniform approximation U̇m(0; x), and the tangent approximation
based at the origin U̇m((m− 1

2)x; 0):
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m=9

Exact

Uniform Approx.

Tangent Approx.



Asymptotic Description of Um and Pm for Large m
Formulae valid in the elliptic region. Two-cut/genus-one analysis.

Quantitative comparison for x ∈ T ∩ R of m−1/3Pm((m− 1
2)2/3x), the

uniform approximation Ṗm(0; x), the tangent approximation based at
the origin Ṗm((m− 1

2)x; 0), and the weak limit Ṗmacro(x):
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Exact

Uniform Approx.

Tangent Approx.

Weak Limit



Asymptotic Description of Um and Pm for Large m
Formulae valid near an edge. Hermite parametrix plus “improvement”.

Each of the three smooth arcs of ∂T has a representation of the form
<{fk(x)} = 0, k = 0,±1, where f±1(x) = f0(e±2πi/3x), and where f0(x) is
analytic for | arg(x)| < π/3. The relation c = f0(x) defines a conformal
map taking the arc of ∂T with | arg(x)| < π/3 to the segment of the
imaginary axis in the c-plane with −2π < ={c} < 0:



Asymptotic Description of Um and Pm for Large m
Formulae valid near an edge. Hermite parametrix plus “improvement”.

Theorem

Assume that <{c(x)} = O(m−1 log(m)) and that
−2π < α ≤ ={c(x)} ≤ β < 0. Then Um and Pm are approximated by
explicit trigonometric formulae, and there exists a family of functions
dK(x) such that the poles of Um are approximated by

c(x) = −(K+1
2)m−1 log(m)+m−1dK(x)+2πijm−1, j ∈ Z, K = 0, 1, 2, 3, . . . .

Thus, the poles lie approximately along the vertical lines
<{c} = −(K + 1

2)m−1 log(m). Moreover, the poles are “staggered” in
both K and m, and the staggering effect weakens as ={c} approaches
−2π or 0, that is, as x approaches a corner of T.



Asymptotic Description of Um and Pm for Large m
Formulae valid near a corner. Painlevé-I tritronquée parametrix.

Here are results are formulated in terms of the famous tritronquée
solution yTT(v) of the Painlevé-I equation (PI):

y′′(v) = 6y(v)2 − v.

The solution yTT(v) is distinguished by its asymptotic behavior:

yTT(v) =
( v

6

)1/2
+O(v−2), v→∞, | arg(v)| < 4π

5
.

All solutions of PI have double poles as their only singularities. The
Hamiltonian associated to each solution y(v) and defined by

H(v) :=
1
2

y′(v)2 + vy(v)− 2y(v)3

Has only simple poles. Let HTT(v) denote the Hamiltonian of the
tritronquée solution yTT(v).



Asymptotic Description of Um and Pm for Large m
Formulae valid near a corner. Painlevé-I tritronquée parametrix.

The negative real corner of T is the point xc = −(9/2)2/3.

Theorem

There exists a function λ̂(x) analytic at xc, such that with
v = −21/153−1/3m4/5(x− xc),

Um = m2m/3emλ̂(x)6−1/3e−λ̂(xc)/2−1/3

·
[
1 + 22/5HTT(v)m−1/5 +O(m−2/5)

]
Pm = −m1/36−1/3

·
[
1 + 212/5HTT(v)m−1/5 +O(m−2/5)

]
both hold uniformly for v = O(1) such that v is also bounded away from
all poles of HTT(v).



Conclusion

In a semiclassical multi-scaling limit solutions to the sine-Gordon
equation with initial data crossing the pendulum separatrix exhibit
a universal structure near the crossing points. Superluminal kinks
are centered along the real graphs of the rational functions Um

associated with the Painlevé-II-α equation.
The rational PII-α functions are “solitons” from the point of view of
the Flaschka-Newell theory, but they can be obtained from the
Jimbo-Miwa theory by means of a Riemann-Hilbert problem with
jumps along contours rather than poles.
The latter formulation makes possible the extraction of detailed
asymptotic formulae (also effective for numerical computation) for
Um and Pm in the limit of large m by the steepest descent method.

Thank You!
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