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Three Years as a Scholiast (2011-2013)

A scholiast (see picture) was a medieval monk writing anno-

tations and comments (scholia) on ancient manuscripts.

A medieval scholiast Modern scholiasts
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The ’Manuscript’:

B. Dubrovin ’On Hamiltonian perturbations of hyperbolic systems of con-

servation laws, II: universality of critical behaviour’. Comm Math Phys.

(2006)

The annotations (scholia):

• D. M., A. Raimondo, ’Semiclassical limit for generalized KdV equations before the
gradient catastrophe’. Lett. Math. Phys. (2011 [2013])

• D. M., A. Raimondo, ’A deformation of the method of characteristics and the Cauchy
problem for Hamiltonian PDEs in the small dispersion limit’. (2012)

• P. Antunes, D.M., A. Raimondo, ’Universality classes of scalar nonlinear PDEs’, In
preparation

3



Short Resume of The Manuscript.

Conjecture: Given a generic Hamiltonian perturbation of the Hopf equation
(e.g. KdV)

ut = uux + ε2uxxx,

then

• Before the breaking of Hopf solution:

the ε→ 0 limit converges.

• At the breaking point (xc, tc):

the (leading term in the) multiscale limit (x, t, ε)→ (xc, tc,0) is univer-
sally described by a special solution of Painleve I (2).
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Plan: Report on our annotations

• Semiclassical limit before the ’gradient catastrophe’

• The String Equation

• Classification of Universality Classes in the Scalar Case. A novel

Painleve equation?
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Semiclassical Limit of Generalized KdV - 2011

We studied the (Hamiltonian) Cauchy problems:

ut = a(u)ux +
n∑
i=1

ε2i ci∂
2i+1
x u, u(x,0) = ϕ(x),

where

• c = (c1, . . . , cn) ∈ Rn,

• a(u) smooth,

• ϕ is independent of ε.
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Let u(ε) be the solution of

ut = a(u)ux + c1ε
2uxxx, u(x,0) = ϕ(x) ∈ Hs,

Theorem [D.M., A. Raimondo, 2011]

Fix s ≥ 3K, the Cauchy problem of GKdV has a unique strong solution

u(ε) ∈ C([0, T ], Hs) .

Moreover, the map

u : R→ C([0, T ], Hs−3K), ε 7→ u(ε)

is 2K-times differentiable.

Remark: if the perturbed equation is globally well-posed, T can be chosen

to be any time smaller than the critical time.
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Remarks/Corollaries

• If the initial data belongs to ∩s≥0H
s then u(x, t, ε) is a smooth function

of the three variables → the perturbative expansion is asymptotic.

• The methods of the proof work for any perturbation of the Hopf equa-

tion by a (sensible) linear pseudo-differential operator.

• Conjecture: T can be always chosen to be any time smaller than the

critical time.

• (Partial) Proof of the ’Main Conjecture, Part 1’ of The Manuscript.

8



Second Year: the String Equation

Consider again the general Hamiltonian perturbation (e.g. KdV)

ut = uux + ε2uxxx , u(x, t = 0, ε) = ϕ(x) .

The Hopf equation, as any scalar PDE of the first order, can be solved by

the method of characteristics.

Can we deform this method? Yes, if ε is small.

Why? Perturbative corrections and Critical Behaviour.

How? Look at the ’manuscript’.
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String Equation II

For the Hopf equation the method of characteristics boils down to the

hodograph functional equation:

x+ ut− f(u) = 0 , f(u) a local inverse of the initial data .

Remark: us = ∂x
(
x+ ut− f(u)

)
is a symmetry of Hopf ut = uux.

The functional equation = equation for the fixed point of this symmetry.

Idea: We have a symmetry and a small parameter ε2, let us deform the

symmetry!

The String Equation = fixed point equation of the deformed symmetry.
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How does it look like?

Method of Characteristics ε = 0

x+ ut = f(u) .

The String Equation for KdV of order O(ε4)

x+ t u = f + ε2
(

1

2
f(3)u2

x + f ′′uxx + f1

)
+ ε4

(
3

5
f(5)u2

xuxx

+
9

10
f(4)u2

xx +
6

5
f(4)uxuxxx +

3

5
f(3)uxxxx −

1

24
f(6)u4

x + f2

)
+O(ε6) , f1 = −

1

2

f ′′

(f ′)2
, f2 =

1

8

f
′′′

(f ′)4
−

1

5

(f ′′)2

(f ′)5
.

The choice of the initial data determines the String equation uniquely.

We chose the functions f1, f2 to fix the initial data independent of ε.
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Our Results (Sloppy formulation)

Theorem:

Take any Hamiltonian PDE and suppose the deformation of the symmetry

is found up to order O(ε2N), the String equation looks like

SN(u, ux, . . . , ε) = O(ε2N+2) .

Call σ(x, t, ε) the evaluation of SN at the solution of the Cauchy problem.

If D ⊂ R3 is a compact domain on which σ is enough differentiable, then

σ(x, t, ε) = O(ε2N+2) on D .

Proof required some technical innovations because the String equation is

local in the space-time.
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Our Results II

• We construct the String equation explicitly up to O(ε4) for the general

Hamiltonian perturbations −→ we compute explicitly the first two non

trivial perturbative corrections.

The generic second correction is a differential expression with more

than one thousand terms.

• Quasi-triviality for solutions of KdV with ε independent initial data.

Smooth (rapidly decaying) solutions of KdV admit an asymptotic ex-

pansion in ε and every term of the expansion is a polynomial differential

in the solution of Hopf equation.
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Example: First Corrections for KdV

Let u the solution of semiclassical KdV and v0 the solution of Hopf then

if u(t = 0) ∈ H9,

u = v0 + ε2v1 + ε4v2 +O(ε6)

where

v1 =
ε2

2
∂2
x

(
log (1 + t v0

x)−
1

(1 + t v0
x)

)

v2 =
ε4 t2

8
∂2
x

t ∂x
(

3

10

20 + 15 t v0
x + 3 t2(v0

x)2

(1 + t v0
x)5

)

−
t2

10

(5 + t v0
x)(v0

xx)3

(1 + t v0
x)5

+ ∂2
x

(
(2 + t v0

x)2

(1 + t v0
x)4

v0
xx

)
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Remarks

• The hypothesis of the proof are verified for GKdV due to our previous
results.

• The proof breaks down at the critical time.

• There is no obstacle to introducing the String equation for non Hamil-
tonian perturbations [Arsie,Lorenzoni, Moro]. Hamiltonian equations
are more manageable.

• If we admit symmetries non-polynomial in the derivatives, it should be
possible to extend the String equation up to any order in ε2 for any
smooth perturbation (issue related with quasi-triviality: [Dubrovin, Wu,
Zhang ...]).
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Why the name ’String equation’ ?

x+ ut = f(u) ∼
∑

cnu
n =

δ

δu

∑ cn
∫
un+1dx

n+ 1
=

δ

δu

∑
cnH

n−1
ε=0 .

Here Hn
ε=0 are the standard Hamiltonians of the Hopf hierarchy.

The natural deformation for KdV is

x+ ut ∼
δ

δu

∑
cnH

n−1
ε .

Here Hn
ε are the standard KdV Hamiltonians.

This is not exactly the deformation we consider because it is irregular at
t = 0 for any decaying initial data.

Moreover, it works just for KdV and the convergence of this series is more
than dubious.
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Why the name ’String equation’ ? II

Suppose the sum is finite

x+ ut =
δ

δu

∑
cNn H

n−1
ε .

take the total x-derivative

1+ = −uxt+
N∑
n
cnutn−1 = −ut0t+

N∑
n
cn[L,L

2n−1
2

+ ]

This coincides with the String equation of Moore, Novikov ... :

the Painleve I hierarchy.
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Pause: Ancient and Modern Times

A serious geometer from 1500
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500 Years Later
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Critical Behaviour after the Manuscript

At some space-time point (xc, tc) the solution u(x, t) of the Hopf equation

develops a singularity.

To unfold the singulairty we take a double scaling limit

u(x, t) = u(xc, tc) + λ1/3U(
(x− xc) + uc(t− tc)

λ
,
t− tc
λ2/3

) +O(λ2/3)

and U(X,T ) is the solution of the truncated String equation

X + UT = U3 =
δH2

ε=0[U ]

δU
.
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The detailed balance of the scaling and the semiclassical parameter ε:

• Multiscale expansion:

u(x, t, ε) ' uc + ε
2
7 U

(
x− xc + uc(t− tc)

ε
6
7

,
t− tc
ε

4
7

)
+O(ε

4
7) .

• for any (generic) Hamiltonian PDE U(X,T ) solves KdV.

• U satisfies the truncated KdV String equation (Painleve I(2))

X + UT =
δH2

ε=1[U ]

δU
= U3 +

1

4
(U ′2 + 2UU ′′) +

1

40
UIV ,

U(X,T ) ∼ sign(X)|X|1/3 as |X| → ∞ .

21



Remarks

• The existence of the multiple scale limit at the critical point (x =

xc, t = tc, ε = 0) proposed by Dubrovin is yet unproven in general.

• Claeys and Grava proved it for KdV and its hierarchy by the methods

of nonlinear steepest descent. Numerical investigation on Kawahara

equation by Dubrovin, Grava, Klein.

• String equation expands solutions of Hamiltonian PDEs in ’Painleve

modes’. At the critical point, only the second mode is triggered.
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A General Scalar PDE

We consider a scalar PDE of the form

ut = uux +N [u]

where N is a ’general’ nonlinear (possibly nonlocal) (pseudo)differential

operator.

We assume that u is a slow-variable, i.e. if the initial data vary on a long

scale 1/ε, the solution evolves slowly:

N [u(
x

ε
)] = εβ+1N [u(x)] + o(εβ+1) , β > 0 , for any smooth u .

Rich phenomenology and lot of examples. Local N : Hamiltonian PDEs,

variable-depth KdV, Burgers-like equations. Nonlocal N : Benjamin-Ono,

ILW, Benjamin-Bona-Mahony, Camassa-Holm ... .
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Critical Behaviour

In the long-wave (semiclassical) limit, the PDE looks like

ut = uux + εβN [u(x)] + o(εβ).

Call Lc the linearization of N at the constant solution u(x) = uc.

If the multiple scale expansion exists, the leading term U(X,T ) solves

UT = UUX + Lc[U ] where Lc[U(X/ε)] = εβ+1Lc[U(X)] .

We say that two equations N1, N2 belong to the same universality class if

for generic uc ∈ R L1
c = L2

c up to a multiplicative constant.
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Conjectural Universality Classes

Translational invariant linear pseudo-differential operator with the scaling

L[v(x/ε)] = εβ+1L[v(x)]

is

L[v] =
∫
eipxµ(p)ṽx(p)dp ,

with symbol

µ(p) = iκ sign(p)|p|β + θ|p|β, κ ≥ 0.

Example: β = 1, θ = 0: UT = UUX + κUXX Burgers equation.

β = 1, κ = 0 UT = UUX + θH[UXX] (Benjamin-Ono).
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String Equation Again

The critical behaviour is conjecturally described by U(X,T ) solution of the

equation UT = UUX + L[U ]. Can we say something more?

Introduce Uµ = µ1/3U(X/µ, T/µ2/3), µ ≤ 1:

Uµ satisfies UT = UUX + µβL[U ]

U0 is the solution of the cubic equation X + UT − U3 = 0: the fixed point

of US = ∂X(X + UT − U3).

Let’s look for a deformation of this symmetry:

US = ∂X(X + UT − U3 + µβK1[U ] + µ2βK2[U ] + . . . ).
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Deformed Symmetry

In general, the symmetry will be an infinite series and it will define U(X,T )
only asymptotically (smallµ = large |X|).

In at least three cases the series is finite:

• Burgers: X + UT = U3 + 3UUx + UXX [Dubrovin et al., Lorenzoni et
al.]

• KdV: X + UT =
δH2

KdV
δU = U3 + 1

4(U ′2 + 2UU ′′) + 1
40U

IV , Painleve I(2)
[Dubrovin]

• Benjamin-Ono: X + UT =
δH2

BO
δU = U3 + 3

2(UH[UX] +H[UUX]) + UXX
[Antunes, M., Raimondo]
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A (Novel) Special Function

It seems that the the critical behaviour of equations in Benjamin-Ono

universality class is described by the solution of

X + UT = U3 +
3

2
(UH[UX] +H[UUX]) + UXX ,

U(X,T ) ∼ sign(X)|X|1/3 as |X| → ∞ .

• Does the solution exists and is unique? Numerically yes.

• Does it extend to a meromorphic function? ?

• Is it transcendental? Not guaranteed: In BO Whitham is ’trivial’ [Miller

and Xu] and traveling waves are rational [Amick and Toland]
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A Novel Painleve Equation ?

Is this equation a novel Painleve-like equation?

X + UT = U3 +
3

2
(UH[UX] +H[UUX]) + UXX

• Isomonodromic system?

• Does it have other solutions, possibly a two dimensional manifold?

• Painleve property?
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Conclusions

Three years as a scholiast:

• Semiclassical limit before the gradient catastrophe for non-integrable

PDEs

• String equation: we proved the validity of an important heuristic tool

• ’Classified’ universality classes of scalar PDEs

• A new? special function
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Some (of the Many) Open Questions

• Semiclassical limit for non-integrable PDEs after the time of catastro-

phe? New tecnhology is needed.

• String equation at the critical point. And after.

• A mathematical theory for the analogue of Painleve I(2) for Benjamin-

Ono.

• How to deform symmetries in case the perturbation is non-local?
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MANY THANKS FOR THE ATTENTION!
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