# The String Equation and Scalar PDEs in the semiclassical regime



#### Davide Masoero

Hamiltonian PDEs, Frobenius Manifolds and Moduli Spaces, SISSA 16-20 September 2013

# Three Years as a Scholiast (2011-2013)

A scholiast (see picture) was a medieval monk writing annotations and comments (scholia) on ancient manuscripts.



A medieval scholiast



Modern scholiasts

The 'Manuscript':

B. Dubrovin 'On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour'. Comm Math Phys. (2006)

The annotations (scholia):

- D. M., A. Raimondo, 'Semiclassical limit for generalized KdV equations before the gradient catastrophe'. Lett. Math. Phys. (2011 [2013])
- D. M., A. Raimondo, 'A deformation of the method of characteristics and the Cauchy problem for Hamiltonian PDEs in the small dispersion limit'. (2012)
- P. Antunes, D.M., A. Raimondo, 'Universality classes of scalar nonlinear PDEs', In preparation

Short Resume of The Manuscript.

Conjecture: Given a generic Hamiltonian perturbation of the Hopf equation (e.g. KdV)

$$u_t = uu_x + \varepsilon^2 u_{xxx},$$

then

• Before the breaking of Hopf solution:

the  $\epsilon \rightarrow 0$  limit converges.

• At the breaking point  $(x_c, t_c)$ :

the (leading term in the) multiscale limit  $(x, t, \epsilon) \rightarrow (x_c, t_c, 0)$  is universally described by a special solution of Painleve I (2).

# Plan: Report on our annotations

• Semiclassical limit before the 'gradient catastrophe'

• The String Equation

• Classification of Universality Classes in the Scalar Case. A novel Painleve equation?

#### Semiclassical Limit of Generalized KdV - 2011

We studied the (Hamiltonian) Cauchy problems:

$$u_t = a(u) u_x + \sum_{i=1}^n \varepsilon^{2i} c_i \partial_x^{2i+1} u, \qquad u(x,0) = \varphi(x),$$

where

• 
$$c = (c_1, \ldots, c_n) \in \mathbb{R}^n$$
,

- a(u) smooth,
- $\varphi$  is independent of  $\varepsilon$ .

Let  $u(\varepsilon)$  be the solution of

$$u_t = a(u)u_x + c_1\varepsilon^2 u_{xxx}, \qquad u(x,0) = \varphi(x) \in H^s,$$

Theorem [D.M., A. Raimondo, 2011]

Fix  $s \ge 3K$ , the Cauchy problem of GKdV has a unique strong solution  $u(\varepsilon) \in C([0,T], H^s)$ .

Moreover, the map

$$u: \mathbb{R} \to C([0,T], H^{s-3K}), \qquad \varepsilon \mapsto u(\varepsilon)$$

is 2K-times differentiable.

Remark: if the perturbed equation is globally well-posed, T can be chosen to be any time smaller than the critical time.

# Remarks/Corollaries

- If the initial data belongs to  $\bigcap_{s\geq 0} H^s$  then  $u(x,t,\varepsilon)$  is a smooth function of the three variables  $\rightarrow$  the perturbative expansion is asymptotic.
- The methods of the proof work for any perturbation of the Hopf equation by a (sensible) linear pseudo-differential operator.
- Conjecture: T can be always chosen to be any time smaller than the critical time.
- (Partial) Proof of the 'Main Conjecture, Part 1' of The Manuscript.

#### Second Year: the String Equation

Consider again the general Hamiltonian perturbation (e.g. KdV)

$$u_t = uu_x + \varepsilon^2 u_{xxx}$$
,  $u(x, t = 0, \varepsilon) = \varphi(x)$ .

The Hopf equation, as any scalar PDE of the first order, can be solved by the method of characteristics.

Can we deform this method? Yes, if  $\varepsilon$  is small.

Why? Perturbative corrections and Critical Behaviour.

How? Look at the 'manuscript'.

# String Equation II

For the Hopf equation the method of characteristics boils down to the hodograph functional equation:

x + ut - f(u) = 0, f(u) a local inverse of the initial data.

Remark:  $u_s = \partial_x (x + ut - f(u))$  is a symmetry of Hopf  $u_t = uu_x$ .

The functional equation = equation for the fixed point of this symmetry.

Idea: We have a symmetry and a small parameter  $\varepsilon^2$ , let us deform the symmetry!

The String Equation = fixed point equation of the deformed symmetry.

#### How does it look like?

Method of Characteristics  $\varepsilon = 0$ 

 $x + ut = f(u) \; .$ 

The String Equation for KdV of order  $O(\varepsilon^4)$ 

$$\begin{aligned} x + t \, u &= f + \varepsilon^2 \left( \frac{1}{2} f^{(3)} u_x^2 + f'' u_{xx} + f_1 \right) + \varepsilon^4 \left( \frac{3}{5} f^{(5)} u_x^2 u_{xx} \right. \\ &+ \frac{9}{10} f^{(4)} u_{xx}^2 + \frac{6}{5} f^{(4)} u_x u_{xxx} + \frac{3}{5} f^{(3)} u_{xxxx} - \frac{1}{24} f^{(6)} u_x^4 + f_2 \right) \\ &+ O(\varepsilon^6) \,, \qquad f_1 = -\frac{1}{2} \frac{f''}{(f')^2} \,, \qquad f_2 = \frac{1}{8} \frac{f'''}{(f')^4} - \frac{1}{5} \frac{(f'')^2}{(f')^5} \,. \end{aligned}$$

The choice of the initial data determines the String equation uniquely.

We chose the functions  $f_1, f_2$  to fix the initial data independent of  $\varepsilon$ .

# Our Results (Sloppy formulation)

#### Theorem:

Take any Hamiltonian PDE and suppose the deformation of the symmetry is found up to order  $O(\varepsilon^{2N})$ , the String equation looks like

$$S^N(u, u_x, \dots, \varepsilon) = O(\varepsilon^{2N+2})$$

Call  $\sigma(x, t, \varepsilon)$  the evaluation of  $S^N$  at the solution of the Cauchy problem. If  $D \subset \mathbb{R}^3$  is a compact domain on which  $\sigma$  is *enough differentiable*, then

$$\sigma(x,t,\varepsilon) = O(\varepsilon^{2N+2})$$
 on D.

Proof required some technical innovations because the String equation is local in the space-time.

# Our Results II

• We construct the String equation explicitly up to  $O(\varepsilon^4)$  for the general Hamiltonian perturbations  $\longrightarrow$  we compute explicitly the first two non trivial perturbative corrections.

The generic second correction is a differential expression with more than one thousand terms.

• Quasi-triviality for solutions of KdV with  $\varepsilon$  independent initial data.

Smooth (rapidly decaying) solutions of KdV admit an asymptotic expansion in  $\varepsilon$  and every term of the expansion is a polynomial differential in the solution of Hopf equation.

#### Example: First Corrections for KdV

Let u the solution of semiclassical KdV and  $v^0$  the solution of Hopf then if  $u(t = 0) \in H^9$ ,

$$u = v^{0} + \varepsilon^{2}v^{1} + \varepsilon^{4}v^{2} + O(\varepsilon^{6})$$

where

$$v^{1} = \frac{\varepsilon^{2}}{2} \partial_{x}^{2} \left( \log \left( 1 + t \, v_{x}^{0} \right) - \frac{1}{\left( 1 + t \, v_{x}^{0} \right)} \right)$$

$$v^{2} = \frac{\varepsilon^{4} t^{2}}{8} \partial_{x}^{2} \left[ t \,\partial_{x} \left( \frac{3}{10} \frac{20 + 15 t \,v_{x}^{0} + 3 t^{2} (v_{x}^{0})^{2}}{(1 + t \,v_{x}^{0})^{5}} \right) - \frac{t^{2}}{10} \frac{(5 + t \,v_{x}^{0}) (v_{xx}^{0})^{3}}{(1 + t \,v_{x}^{0})^{5}} + \partial_{x}^{2} \left( \frac{(2 + t \,v_{x}^{0})^{2}}{(1 + t \,v_{x}^{0})^{4}} \,v_{xx}^{0} \right) \right]$$

# Remarks

- The hypothesis of the proof are verified for GKdV due to our previous results.
- The proof breaks down at the critical time.
- There is no obstacle to introducing the String equation for non Hamiltonian perturbations [Arsie,Lorenzoni, Moro]. Hamiltonian equations are more manageable.
- If we admit symmetries non-polynomial in the derivatives, it should be possible to extend the String equation up to any order in  $\varepsilon^2$  for any smooth perturbation (issue related with quasi-triviality: [Dubrovin, Wu, Zhang ...]).

### Why the name 'String equation'?

$$x + ut = f(u) \sim \sum c_n u^n = \frac{\delta}{\delta u} \sum \frac{c_n \int u^{n+1} dx}{n+1} = \frac{\delta}{\delta u} \sum c_n H_{\varepsilon=0}^{n-1}$$

Here  $H_{\varepsilon=0}^n$  are the standard Hamiltonians of the Hopf hierarchy.

The natural deformation for KdV is

$$x + ut \sim \frac{\delta}{\delta u} \sum c_n H_{\varepsilon}^{n-1}$$

Here  $H_{\varepsilon}^{n}$  are the standard KdV Hamiltonians.

This is not exactly the deformation we consider because it is irregular at t = 0 for any decaying initial data.

Moreover, it works just for KdV and the convergence of this series is more than dubious.

#### Why the name 'String equation'? II

Suppose the sum is finite

$$x + ut = \frac{\delta}{\delta u} \sum c_n^N H_{\varepsilon}^{n-1}$$

•

take the total x-derivative

$$1 + = -u_x t + \sum_{n=1}^{N} c_n u_{t_{n-1}} = -u_{t_0} t + \sum_{n=1}^{N} c_n [L, L_{+}^{\frac{2n-1}{2}}]$$

This coincides with the String equation of Moore, Novikov ... :

the Painleve I hierarchy.

# Pause: Ancient and Modern Times



A serious geometer from 1500



500 Years Later

#### Critical Behaviour after the Manuscript

At some space-time point  $(x_c, t_c)$  the solution u(x, t) of the Hopf equation develops a singularity.

To unfold the singulairty we take a double scaling limit

$$u(x,t) = u(x_c, t_c) + \lambda^{1/3} U(\frac{(x - x_c) + u_c(t - t_c)}{\lambda}, \frac{t - t_c}{\lambda^{2/3}}) + O(\lambda^{2/3})$$

and U(X,T) is the solution of the truncated String equation

$$X + UT = U^3 = \frac{\delta H_{\varepsilon=0}^2[U]}{\delta U} \,.$$

20

The detailed balance of the scaling and the semiclassical parameter  $\varepsilon$ :

• Multiscale expansion:

$$u(x,t,\varepsilon) \simeq u_c + \varepsilon^{\frac{2}{7}} U\left(\frac{x - x_c + u_c(t - t_c)}{\varepsilon^{\frac{6}{7}}}, \frac{t - t_c}{\varepsilon^{\frac{4}{7}}}\right) + O(\varepsilon^{\frac{4}{7}}).$$

- for any (generic) Hamiltonian PDE U(X,T) solves KdV.
- U satisfies the truncated KdV String equation (Painleve I(2))

$$X + UT = \frac{\delta H_{\varepsilon=1}^2[U]}{\delta U} = U^3 + \frac{1}{4}(U'^2 + 2UU'') + \frac{1}{40}U^{IV},$$
  
$$U(X,T) \sim \operatorname{sign}(X)|X|^{1/3} \text{ as } |X| \to \infty.$$

#### Remarks

- The existence of the multiple scale limit at the critical point ( $x = x_c, t = t_c, \varepsilon = 0$ ) proposed by Dubrovin is yet unproven in general.
- Claeys and Grava proved it for KdV and its hierarchy by the methods of nonlinear steepest descent. Numerical investigation on Kawahara equation by Dubrovin, Grava, Klein.
- String equation expands solutions of Hamiltonian PDEs in 'Painleve modes'. At the critical point, only the second mode is triggered.

# A General Scalar PDE

We consider a scalar PDE of the form

 $u_t = uu_x + N[u]$ 

where N is a 'general' nonlinear (possibly nonlocal) (pseudo)differential operator.

We assume that u is a slow-variable, i.e. if the initial data vary on a long scale  $1/\varepsilon$ , the solution evolves slowly:

$$N[u(\frac{x}{\varepsilon})] = \varepsilon^{\beta+1}\overline{N}[u(x)] + o(\varepsilon^{\beta+1}), \beta > 0, \text{ for any smooth } u.$$

Rich phenomenology and lot of examples. Local N: Hamiltonian PDEs, variable-depth KdV, Burgers-like equations. Nonlocal N: Benjamin-Ono, ILW, Benjamin-Bona-Mahony, Camassa-Holm ... .

## Critical Behaviour

In the long-wave (semiclassical) limit, the PDE looks like

$$u_t = uu_x + \varepsilon^{\beta} \overline{N}[u(x)] + o(\varepsilon^{\beta}).$$

Call  $L_c$  the linearization of  $\overline{N}$  at the constant solution  $u(x) = u_c$ .

If the multiple scale expansion exists, the leading term U(X,T) solves

$$U_T = UU_X + L_c[U]$$
 where  $L_c[U(X/\varepsilon)] = \varepsilon^{\beta+1}L_c[U(X)]$ .

We say that two equations  $N^1, N^2$  belong to the same universality class if for generic  $u_c \in \mathbb{R}$   $L_c^1 = L_c^2$  up to a multiplicative constant.

#### Conjectural Universality Classes

Translational invariant linear pseudo-differential operator with the scaling

$$L[v(x/\varepsilon)] = \varepsilon^{\beta+1}L[v(x)]$$
  
is  
$$L[v] = \int e^{ipx}\mu(p)\tilde{v_x}(p)dp,$$
  
with symbol  
$$\mu(p) = i\kappa \operatorname{sign}(p)|p|^{\beta} + \theta|p|^{\beta}, \qquad \kappa \ge 0.$$

Example:  $\beta = 1, \theta = 0$ :  $U_T = UU_X + \kappa U_{XX}$  Burgers equation.

 $\beta = 1, \kappa = 0 \ U_T = UU_X + \theta \mathcal{H}[U_{XX}]$  (Benjamin-Ono).

## String Equation Again

The critical behaviour is conjecturally described by U(X,T) solution of the equation  $U_T = UU_X + L[U]$ . Can we say something more?

Introduce  $U_{\mu} = \mu^{1/3} U(X/\mu, T/\mu^{2/3}), \mu \leq 1$ :

 $U_{\mu}$  satisfies  $U_T = UU_X + \mu^{\beta} L[U]$ 

 $U_0$  is the solution of the cubic equation  $X + UT - U^3 = 0$ : the fixed point of  $U_S = \partial_X (X + UT - U^3)$ .

Let's look for a deformation of this symmetry:

$$U_S = \partial_X (X + UT - U^3 + \mu^{\beta} K_1[U] + \mu^{2\beta} K_2[U] + \dots).$$

# Deformed Symmetry

In general, the symmetry will be an infinite series and it will define U(X,T) only asymptotically (small $\mu = |arge|X|$ ).

In at least three cases the series is finite:

- Burgers:  $X + UT = U^3 + 3UU_x + U_{XX}$  [Dubrovin et al., Lorenzoni et al.]
- KdV:  $X + UT = \frac{\delta H_{KdV}^2}{\delta U} = U^3 + \frac{1}{4}(U'^2 + 2UU'') + \frac{1}{40}U^{IV}$ , Painleve I(2) [Dubrovin]
- Benjamin-Ono:  $X + UT = \frac{\delta H_{BO}^2}{\delta U} = U^3 + \frac{3}{2}(U\mathcal{H}[U_X] + \mathcal{H}[UU_X]) + U_{XX}$ [Antunes, M., Raimondo]

# A (Novel) Special Function

It seems that the the critical behaviour of equations in Benjamin-Ono universality class is described by the solution of

$$X + UT = U^3 + \frac{3}{2} (U\mathcal{H}[U_X] + \mathcal{H}[UU_X]) + U_{XX},$$
  
$$U(X,T) \sim \operatorname{sign}(X) |X|^{1/3} \text{ as } |X| \to \infty.$$

- Does the solution exists and is unique? Numerically yes.
- Does it extend to a meromorphic function? ?
- Is it transcendental? Not guaranteed: In BO Whitham is 'trivial' [Miller and Xu] and traveling waves are rational [Amick and Toland]

#### A Novel Painleve Equation ?

Is this equation a novel Painleve-like equation?

$$X + UT = U^3 + \frac{3}{2}(U\mathcal{H}[U_X] + \mathcal{H}[UU_X]) + U_{XX}$$

- Isomonodromic system?
- Does it have other solutions, possibly a two dimensional manifold?
- Painleve property?

# Conclusions

Three years as a scholiast:

- Semiclassical limit before the gradient catastrophe for non-integrable PDEs
- String equation: we proved the validity of an important heuristic tool
- 'Classified' universality classes of scalar PDEs
- A new? special function

# Some (of the Many) Open Questions

- Semiclassical limit for non-integrable PDEs after the time of catastrophe? New tecnhology is needed.
- String equation at the critical point. And after.
- A mathematical theory for the analogue of Painleve I(2) for Benjamin-Ono.
- How to deform symmetries in case the perturbation is non-local?

# MANY THANKS FOR THE ATTENTION!