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e Integrable Quantum Field Theory (QFT), Integrals of Motion

— Conformal Field Theory (CFT), Infinite-dimensional algebra
of (extended) conformal symmetry

— Bethe Ansatz, functional relations for commuting transfer matrices
e Theory of differential equations
— Scattering problem for ODE, connection coefficients,
Stocks multipliers, ...
— monodromy group, monodromy-free singular points
— second order PDE, arising as “zero-curvature condition”

for flat connections on the sphere

e Space of states in QFT — Set of differential operators
with special properties



Local IM in CFT
(VB, Lukyanov, Zamolodchikov, 1994)

Let Vir be the Virasoro algebra generated by L, € Vir,

c
(L, L] = (m —n) Ly + 1—2(n3 — ) 0mtn.0

Suppose we are given a set of mutually commuting operators from the universal enveloping
of Vir:
I, eUWVir) : |L,Ig]=0.

What is the spectrum of I in the
highest weight representaion of Vir : Va.7?

We are forced to make some assumptions about the Abelian subalgebra.



e It would be natural to include Ly in the commuting set; Lg splits Va .

on the finite dimensional level subspaces:
Lo VY = (A+ L) Vi dim [V{")] < o0 .
Therefore, the problem is reduced to a finite dimensional spectrum problem in VA(,LC) :

e We choose the first nontrivial I, in the form

Z@nL—nLn—i_ﬁLO_'_/y

e Locality condition: Let T(z), z € S (x ~ x + R) be the holomorphic component
of stress-energy tensor. We assume that I, are given by the integral over the

local densities build from the field T'(z). For example

AZ%TZE{%—EJ
2T 24

The quadratic in L,, operator is defined up to overall normalization by our

locality requirement

R\3 ad 2 5¢ + 22
Ingﬁz(_) {QZLnLnJrLg_iLOJrC(CJF )
n=1
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All other operators I, are defined (up to overall factor) by the commutativity condition.

For example
+ 2
I j{( 3 612 (/)2)

There exists an infinite set {I,, ;}>°, which first representatives are given
by the above formulas. They are the so called local Integrals of Motion (IM).
The odd-integers 2n — 1 stand for the values of the Lorentz spin.

We'll focus on the highest vector eigenvalues:
vac R 2n—1 ’UCLC
) 0 Ll =(52)  HM1),

which are certain polynomials in A and c:

(UGC) A vac) _ A2 _ c+ 2 A 4 C(5C + 22)
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CFT integrals of motion — quantization of conserved quantities

in KAV theory
T@y%—gU@% OU = UUy — 60y, € —5 0C



Functional relations

Transfer matrices T; () (quantum analogs of traces of monodromy matrices
for mKdV) satisfy the fusion relations

Tj(qm)Ti(q ') = 1+ Ty 1 ()T,

N

T, can be regarded as generating function for the local IM

1

0
log T ~ E cj) Iy, K&'72" Kk = [12(-58%)
n=0

As 8% = z% the functional relations are truncated. In this case the vacuum eigenvalues,

T;(1)|A) = t;(1) |A)

satisfy a certain set of integral equations (TBA equations). Numerical values of the

vacuum eigenvalues 12( i can be extracted from the solutions of the TBA equations.

The TBA equations are expecially simple in the case

1 1 — 4N?
=——  N=12... A= .
g N+1° L 6(N +1)




ODE/IM correspondence

Let us consider the anharmonic potential

d2
(—d—y2+y2N—E) V=0,

The WKB spectrum can be determined by means of the WKB approximation.

\ | WKB spectra {E,}2, = ¢$dy/E, —U(y) =27(n+ ...

\ . E
\ J Ej

e Voros (1992) derived the exact Exact Bohr-Sommerfeld quantization condition.

e Dorey-Tateo (1998) observed that BLZ TBA for 5% =

the same as the Voros one.

~oT +1 are exactly

e The observation was immediately generalized and proven by BLZ (1998)

e ODE/IM correspondence for the excited states was established by BLZ (2003)



According to BLZ (1998) the vacuum eigenvalues of T;(u), i.e., t;(n), (7 =
coincide with certain monodromy coefficients for the ODE

( > I(l+1)

_dz2+ = —|—/<;2p(z))\IJ:0, p(z)=2"*—1.

One can reformulate the BLZ result in terms of the vacuum eigenvalues IQ(ZG_C{;

w:/dz\/@ : (—dd—;+ﬁ(w)—|—/i2)qf:0

(2n—3)!!

Cn = "onpl
() ~ e exp (= -+ S, 6 6 [ dw U )

F(w) = Z k2 E[a(w)]  F,la] — differential polinomials in 4 .
n=1

Also U, |[u] are homogeneous (grade(u) = 2, grade(d) = 1, grade(U,,) = 2n) differential

polynomials in @ of degree n (known as the Gel’fand-Dikii polynomials):

U =0, U=u"—=1a"..

1
3

020)



Hence the monodromy coefficients are given by

log b1 (1) ~ S e B Qa1 s Gan s = ]f duw U ()]
Cuw

n

We may now return to the original variable z

w—z, Ult(w)] — U,(z)

®
N/ R

The ODE/IM correspondence : Ié:ff‘_ci = dy, Jon—1
Here d,, are some (known) constants which depend on normalization conventions for
Jon—1 and Iy, 1, whereas the parameters are identified as follows:
6 A (21 +1)* — 4a?
’ 16(a+1)

c=1—



Excited states

(—83+TL(Z))¢:O, TL(z):_Z(( 0; + C; )

=1
with {z;} = {21, 20, 23, 21,..., 21} and
1 5
5121—]?1, 221,2,3; 5a+3:_27 CL:LQ,...,L
Monodromy group
M : m(CP"\{z}) — SL(2,C), Tr(M(i)) = —2 cos(2mp;) .
Condition: points x1,...,z; are monodromy-iree
la(la +1 Ca+3 (a) k
L(Z> (Z—CCa) Z—ZCa Z a ) )

(Cass)® — 4 caps t1 + 46l =0 .

For fixed p;, the only free parameters are the positions x1, ..., xr.
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2

D(\) = T2 + 17 (2) + N P(z), Pz)= (Z(Zj Z_l)222—):11(221__222/)32)—052(@2__zzl)):—gag

and parameters 0 < a; < 2 satisty the constraint a; 4+ a9 + a3 = 2. Monodromy free
conditions give additional L equations

3

2—a,
)\mazz%_azi, a=1,.. L.

=1

Cat+3 = _az IOgP(Z

number of solutions N7, = p3(L) = 3,9,22,.... (stationary states in CFT for Fateev model).

Monodromy matrix for the Pochhammer loop (¢(x) = cos(nx))
W(A) = Tr M (vp) = 2 (2 + c(4p1) + c(4ps) + c(4ps) + c(2p1 + 2p; + 2p3)
+c(2p1 + 2p2 — 2p3) + ¢(2p1 — 2p2 + 2p3) + ¢(—2p1 + 2ps + 2p3) ) + O(N?)

For p; = 0 the constant term equals 18.
WHY? What does it mean for the hypergeometric equation?
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ODE/IM correspondence for massive integrable QFT

Now we consider the CFT perturbed by a relevant operator in the bulk

X~X+R

\

AM:AC’FT‘l‘,LLfd2$(I) (de = 2A¢ < 2)

In general one expects that the perturbation leads to the massive QFT

1

Mawum

In the case of integrable perturbation the theory possesses an infinite set of local IM

Hs’u—)O — I[gCFT) ) ﬂs’u—)O — E(S:CFT)

Let I5,_1 = I5,_1 be the vacuum eigenvalues of I, and I,.

Is it possible to relate I, |(¢) to monodromic characteristics of some ODE?
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During the decade 1998-2008, all attempts to incorporate massive integrable QFT
in the ODE/IM correspondence have failed.

e Gaiotto, Moore and Neitzke (2008): TBA-like equations for the Hitchin systems
e Alday, Maldacena (2009): Strong coupling amplitudes in ADS/CFT
e Zamolodchikov, Lukyanov (2010): ODE/IM for the sin(h)-Gordon model
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CMC embedding of a 3-punctured sphere in AdS;

Let 3, , be a compact Riemann surface with n marked points (“punctures”) and

ay, Qsg, .. .a, be positive numbers such that 2 x(X,) + > " (a; — 2) = 0. Then there
exists a flat metric on ¥,,, with conical singularities of angle 7a; at the i** puncture.
The metric is unique up to homothety.

Conical Punctures

In the case X3 =S?/{P, P, P} : a1+as+az=2

Introduce a complex coordinate z and define a holomorphic differential p(z) (dz)? on
the universal cover of X 3:

pry=p TR m Bt B ) Gz G dads

(2 — 21)?7 (2 — 29)2792(2 — 23)27 %

Here p stands for the homothety parameter and z; labels the punctures.
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Consider now the problem of constant mean curvature embedding of Xy 3 into AdSs.

In this case, the Gauss-Peterson-Codazzi equation can be brought to the form of the
modified Sinh-Gordon (MShG) equation

0.0:n — e + p(2)p(2) e " =0,
where the field 1 defines the induced metric

2n
> 4 e

T+ L /p(2)p(z)

(ds) (ds)g

and H = const stands for the mean curvature. A suitable solution should be real
and smooth as z # z;, and, if we want to preserve the amount of the Gaussian curvature
localized at the punctures, it should satisfy the conditions

n— i log (p(z)ﬁ(i)) = O(1) at z— 2z (1=1,2,3) and oo .

—21 O(1 t —
Generalized problem : n = oglz[ +O(1) a Z — 00
2m; log |z — z;| + O(1) at z =z
1 1
If 0<a;, <2 and —§<mi§_Z (2 — a;)

then the solution of the generalized problem exists and is unique.
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The MShG equation is the compatibility condition of the linear problem

D\N® =0, DANP =0.

DM =0.—-A,, D\ =0,—A;, A = pe?, A= pe?
A, = —3 8z7703+)_\ (ore"+o- P(_z)e_")
A; =  $0mos+ A (o_e+o, Pz)e") .
Additional monodromy-free punctures
e—”f\/z_xa7 (a=1,...L), e_”wf_%b, (b=1,...L)
Z— X, <= Y
satisty the conditions
1 1 1
d,n = + — v, +o0(1), o-n=———+0(1), a=1,...L
2 — T, 2 Z— I,

and

Yo = 0. log P(Z) ’ZZ«TCL

and similarly for ys.
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The MShG equation is a flatness condition for si(2)-valued connection A = A.dz + A.dz.
The connection is not single-valued on the punctured sphere. However, it does return
to the original branch after a continuation along the non-contractible loop C

Therefore the Wilson loop

W (6) :Tr[PeXp<jI€A)]

does not depend on the precise shape of the cycle used. It can be regarded as generating
functions for the conserved charges

log W (0) ~ —qoe’ + ch Gon_1 € 2" V9 as Re(h) — 400, |Sm()| < =

n=1

_ (=" I(
!

1
here ¢, = 5~ 2).

I
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Fateev model (1996)

1

L= for 2 (00) - (0:007)

=1

+ 2u {eio“”% cos(ap1 + aaps) 4+ €733 cos(anpr — anps)

Here «; are coupling constants subject to a single constraint

1

ai >0, as >0, az >0 .

The parameter p in the Lagrangian sets the mass scale, y ~ [ mass]. We shall consider
the theory in finite-size geometry, with the spatial coordinate x in @; = @;(z,t)
compactified on a circle of circumference R, with the periodic boundary conditions

wi(x + R, t) = pi(x,t) .
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Due to the periodicity of the potential term in ;,

1
L = —

167

3
((Oepi)* = (0upi))
i=1
+ 2pu [em?’m cos(a1p1 + o) + € cos(anpr — 042902)}
the space of states H splits on the orthogonal subspaces Hyg, x, k, characterized by the
three “quasimomentums” k;:

2mik;

Vi = Yi T+ 27T/Oéi : | \Ijkl,k&,k:% > — € \Ijk1,7€2>k3 > :
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The Fateev model is integrable, in particular it has infinite set of commuting local IM

H;j;)_l, ]Ig;)_ 1, 2n =246, ... being the Lorentz spins of the associated local densities
Bonts = / { Y C) (0r01)* (0rp2)? (Ori0s)™ + ..
i+7+k=n
where 01 = %(8;1: F 0;) and ... stand for the terms involving higher derivatives of (;,

as well as the terms proportional to powers of 1. The constant Cfﬁg is known
(Zamolodchikov, Lukyanov, 2012)

n! (203(1=2n)) (203 (1—2n)), . (205(1—2n))

) = . _
wk g1 gkl (2n —1)3 (4daf)1= (4a3)'=7 (4ad)l—F ’
where (z),, is the Pochhammer symbol. The displayed terms with the given
ng set the normalization of ]Igi:)_l unambiguously.

20



Of primary interest are the k-vacuum eigenvalues
Loy = L) ({ki} | R) = I,y ({ki} | R)

especially the k-vacuum energy
E=21.

In the large-R limit all vacuum eigenvalues I»,_; vanish except I;. The vacuum energy is
composed of an extensive part proportional to the length of the system,

E=RE& +o(1) at R — oo

Specific bulk energy (Fateev, 1996)

21



ODE/IM correspondence

The vacuum eigenvalues of the local IM in the Fateev model can be expressed in terms
of the classical conserved charges q2,,_1:

Iu_l ([1 — leo) = dl g1
W Iy = dy qon (n=2,3,...).

Here d,, are constants, independent of k; and R. With the normalization conditions

for gqo,—1 and ]Igjf)_l described above, d, reads explicitly as

d, = (27r)2”_1 T 772 H L(22n—1)a;) .

The parameters of the quantum and classical problems are identified as follows:

O = T (i=1,2,3)
1
plRo= 2p
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Conclusion

There a connection between the theory of Integrable Models in two dimensions
and the spectral analysis of Ordinary Differential Equations.

Classical conserved charges = Eigenvalues of IM in the integrable QFT

Eigenvalues of transfer matrices = connection coefficients between different
bases solutions of ODE.

We considered a class of “Perturbed Fuchsian differential equations”

What is 187 (Mininal dimension of representation of the quantized

AN

exceptional affine superalgebra U,(D(2,1,;a)))
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