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• Integrable Quantum Field Theory (QFT), Integrals of Motion

– Conformal Field Theory (CFT), Infinite-dimensional algebra
of (extended) conformal symmetry

– Bethe Ansatz, functional relations for commuting transfer matrices

• Theory of differential equations

– Scattering problem for ODE, connection coefficients,
Stocks multipliers, . . .

– monodromy group, monodromy-free singular points

– second order PDE, arising as “zero-curvature condition”
for flat connections on the sphere

• Space of states in QFT — Set of differential operators
with special properties
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Local IM in CFT

(VB, Lukyanov, Zamolodchikov, 1994)

Let V ir be the Virasoro algebra generated by Ln ∈ V ir,

[Lm, Ln] = (m− n)Lm+n +
c

12
(n3 − n)δm+n,0

Suppose we are given a set of mutually commuting operators from the universal enveloping algebra
of V ir:

Is ∈ U(V ir) : [Is, Is′ ] = 0 .

What is the spectrum of Is in the

highest weight representaion of V ir : V∆,c ?

We are forced to make some assumptions about the Abelian subalgebra.
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• It would be natural to include L0 in the commuting set; L0 splits V∆,c

on the finite dimensional level subspaces:

L0 V
(L)
∆,c = (∆ + L) V

(L)
∆,c dim

[
V

(L)
∆,c

]
<∞ .

Therefore, the problem is reduced to a finite dimensional spectrum problem in V
(L)
∆,c .

• We choose the first nontrivial Is in the form∑

n

αn L−nLn + β L0 + γ

• Locality condition: Let T (x), x ∈ S1 (x ∼ x+R) be the holomorphic component

of stress-energy tensor. We assume that Is are given by the integral over the

local densities build from the field T (x). For example

I1 =

∮
T =

R

2π

[
L0 −

c

24

]

The quadratic in Ln operator is defined up to overall normalization by our

locality requirement

I3 =

∮
T 2 =

( R
2π

)3 [
2

∞∑

n=1

LnLn + L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880

]
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All other operators Is are defined (up to overall factor) by the commutativity condition.
For example

I5 =

∮ (
T 3 +

c+ 2

12
(T ′)2

)

There exists an infinite set {I2n−1}
∞
n=1 which first representatives are given

by the above formulas. They are the so called local Integrals of Motion (IM).
The odd-integers 2n− 1 stand for the values of the Lorentz spin.

We’ll focus on the highest vector eigenvalues:

I
(vac)
2n−1(∆, c) : I2n−1 |∆〉 =

( R
2π

)2n−1

I
(vac)
2n−1 |∆〉 ,

which are certain polynomials in ∆ and c:

I
(vac)
1 = ∆−

c

24
, I

(vac)
3 = ∆2 −

c+ 2

12
∆ +

c(5c+ 22)

2880
, . . .

CFT integrals of motion — quantization of conserved quantities

in KdV theory

T (x) → −
c

6
U(x), ∂tU = UUx − 6Uxxx, c→ ∞
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Functional relations

• Transfer matrices Tj(µ) (quantum analogs of traces of monodromy matrices
for mKdV) satisfy the fusion relations

Tj(qµ)Tj(q
−1µ) = 1 + Tj+ 1

2
(µ)Tj− 1

2
(µ) ,

(
q = eiπβ

2

, c = 1− 6 (β − β−1)2
)

• Tj can be regarded as generating function for the local IM

logTj ∼
∞∑

n=0

c(j)n I2n−1 κ
1−2n κ = µ

1
2(1−β2)

• As β2 = p

p′
the functional relations are truncated. In this case the vacuum eigenvalues,

Tj(µ)|∆〉 = tj(µ) |∆〉

satisfy a certain set of integral equations (TBA equations). Numerical values of the

vacuum eigenvalues I
(vac)
2n−1 can be extracted from the solutions of the TBA equations.

• The TBA equations are expecially simple in the case

β2 =
1

N + 1
, N = 1, 2, . . . ∆ =

1− 4N2

6(N + 1)
.
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ODE/IM correspondence

Let us consider the anharmonic potential

(
−

d2

dy2
+ y2N − E

)
Ψ = 0 .

The WKB spectrum can be determined by means of the WKB approximation.

E1

E2

WKB spectra {En}
∞
n=1 =⇒

∮
dy

√
En − U(y) = 2π(n+ ...)

y2N

• Voros (1992) derived the exact Exact Bohr-Sommerfeld quantization condition.

• Dorey-Tateo (1998) observed that BLZ TBA for β2 = 1
N+1

are exactly

the same as the Voros one.

• The observation was immediately generalized and proven by BLZ (1998)

• ODE/IM correspondence for the excited states was established by BLZ (2003)
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According to BLZ (1998) the vacuum eigenvalues of Tj(µ), i.e., tj(µ), (j =
1
2
, 1, . . .)

coincide with certain monodromy coefficients for the ODE

(
−

d2

dz2
+
l(l + 1)

z2
+ κ2 p(z)

)
Ψ = 0 , p(z) = z2α − 1 .

One can reformulate the BLZ result in terms of the vacuum eigenvalues I
(vac)
2n−1;

w =

∫
dz

√
p(z) :

(
−

d2

dw2
+ û(w) + κ2

)
Ψ̃ = 0

cn = (2n−3)!!
2nn!

Ψ̃(w) ∼ eF (w) exp
(
− κw +

∑∞
n=1 κ

1−2n cn
∫ w

dw Un[û]
)

F (w) =
∞∑

n=1

κ−2nFn[û(w)] Fn[û]− differential polinomials in û .

Also Un[ û ] are homogeneous (grade(û) = 2, grade(∂) = 1, grade(Un) = 2n) differential
polynomials in û of degree n (known as the Gel’fand-Dikii polynomials):

U1 = û , U2 = û2 −
1

3
û′′ ...
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Hence the monodromy coefficients are given by

log t 1
2
(µ) ∼

∑

n

cn κ
1−2n

q2n−1 , q2n−1 =

∮

Cw

dwUn[û(w)]

We may now return to the original variable z

w → z , Un[û(w)] → Ũn(z)

z

1
0

Cπ
α

q2n−1 =
∮
C
dz Ũn(z) (p(z) = z2α − 1)

The ODE/IM correspondence : I
(vac)
2n−1 = dn q2n−1

Here dn are some (known) constants which depend on normalization conventions for
q2n−1 and I2n−1, whereas the parameters are identified as follows:

c = 1−
6α2

α + 1
, ∆ =

(2l + 1)2 − 4α2

16(α + 1)
.
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Excited states

(
− ∂2z + TL(z)

)
ψ = 0, TL(z) = −

L+3∑

i=1

( δi
(z − zi)2

+
ci

z − zi

)

with {zi} = {z1, z2, z3, x1, . . . , xL} and

δi =
1

4
− p2i , i = 1, 2, 3; δa+3 = −2, a = 1, 2, . . . , L

Monodromy group

M : π1
(
CP

1\{zi}
)
7→ SL(2,C) , Tr

(
M (i)

)
= −2 cos(2πpi) .

Condition: points x1, . . . , xL are monodromy-free

TL(z) = −
la(la + 1)

(z − xa)2
−

ca+3

z − xa
−

+∞∑

k=0

t
(a)
k (z − xa)

k, a = 1, . . . , L

(ca+3)
3 − 4 ca+3 t

(a)
0 + 4 t

(a)
1 = 0 .

For fixed pi, the only free parameters are the positions x1, . . . , xL.
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D(λ) = −
d2

dz2
+ TL(z) + λ2 P(z) , P(z) =

(z3 − z2)
a1 (z1 − z3)

a2 (z2 − z1)
a3

(z − z1)2−a1(z − z2)2−a2(z − z3)2−a3

and parameters 0 < ai < 2 satisfy the constraint a1 + a2 + a3 = 2. Monodromy free
conditions give additional L equations

ca+3 = −∂z logP(z)
∣∣
z=xa

=
3∑

i=1

2− ai
xa − zi

, a = 1, . . . L .

number of solutions NL = p3(L) = 3, 9, 22, . . .. (stationary states in CFT for Fateev model).

zj

zi

zk

z1

z2z3

γ
P

Monodromy matrix for the Pochhammer loop (c(x) = cos(πx))

W(λ) = TrM (γP ) = 2
(
2 + c(4p1) + c(4p2) + c(4p3) + c(2p1 + 2p2 + 2p3)

+c(2p1 + 2p2 − 2p3) + c(2p1 − 2p2 + 2p3) + c(−2p1 + 2p2 + 2p3)
)
+O(λ2)

For pi = 0 the constant term equals 18.
WHY? What does it mean for the hypergeometric equation?
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ODE/IM correspondence for massive integrable QFT

Now we consider the CFT perturbed by a relevant operator in the bulk

x~x+R

Aµ = ACFT + µ
∫
d2x Φ (dΦ = 2∆Φ < 2)

In general one expects that the perturbation leads to the massive QFT

Ma ∼ µ
1

2−dΦ

In the case of integrable perturbation the theory possesses an infinite set of local IM

Is|µ→0 = I
(CFT )
s , Īs|µ→0 = Ī

(CFT )
s

Let I2n−1 = Ī2n−1 be the vacuum eigenvalues of Is and Īs.

Is it possible to relate I2n−1(µ) to monodromic characteristics of some ODE?
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During the decade 1998-2008, all attempts to incorporate massive integrable QFT
in the ODE/IM correspondence have failed.

• Gaiotto, Moore and Neitzke (2008): TBA-like equations for the Hitchin systems

• Alday, Maldacena (2009): Strong coupling amplitudes in ADS/CFT

• Zamolodchikov, Lukyanov (2010): ODE/IM for the sin(h)-Gordon model
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CMC embedding of a 3-punctured sphere in AdS3

Let Σg,n be a compact Riemann surface with n marked points (“punctures”) and
a1, a2, . . . an be positive numbers such that 2χ(Σg) +

∑n

i=1(ai − 2) = 0. Then there
exists a flat metric on Σg,n with conical singularities of angle πai at the i

th puncture.
The metric is unique up to homothety.

Conical  Punctures

In the case Σ0,3 = S
2/{P1, P2, P3} : a1 + a2 + a3 = 2

Introduce a complex coordinate z and define a holomorphic differential p(z) (dz)2 on
the universal cover of Σ0,3:

p(z) = ρ2
(z3 − z2)

a1 (z1 − z3)
a2 (z2 − z1)

a3

(z − z1)2−a1(z − z2)2−a2(z − z3)2−a3
: (ds)20 =

√
p(z)p̄(z̄) dzdz̄

Here ρ stands for the homothety parameter and zi labels the punctures.
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Consider now the problem of constant mean curvature embedding of Σ0,3 into AdS3.
In this case, the Gauss-Peterson-Codazzi equation can be brought to the form of the
modified Sinh-Gordon (MShG) equation

∂z∂z̄η − e2η + p(z)p̄(z̄) e−2η = 0 ,

where the field η defines the induced metric

(ds)2cmc =
4

1 +H2

e2η√
p(z)p̄(z̄)

(ds)20

and H = const stands for the mean curvature. A suitable solution should be real
and smooth as z 6= zi, and, if we want to preserve the amount of the Gaussian curvature
localized at the punctures, it should satisfy the conditions

η − 1
4
log

(
p(z)p̄(z̄) ) = O(1) at z → zi (i = 1, 2, 3) and ∞ .

Generalized problem : η =

{
−2 log |z|+O(1) at z → ∞

2mi log |z − zi|+O(1) at z → zi

If 0 < ai < 2 and −
1

2
< mi ≤ −

1

4
(2− ai)

then the solution of the generalized problem exists and is unique.
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The MShG equation is the compatibility condition of the linear problem

D(λ)Ψ = 0 , D̄(λ̄)Ψ = 0 .

D(λ) = ∂z −Az , D̄(λ̄) = ∂z̄ −Az̄ , λ = ρeθ, λ̄ = ρe−θ

Az = −1
2
∂zη σ3 + λ

(
σ+ eη + σ− P(z) e−η

)

Az̄ = 1
2
∂z̄η σ3 + λ̄

(
σ− e−η + σ+ P̄(z̄) eη

)
.

Additional monodromy-free punctures

e−η ∼
z̄ − x̄a
z − xa

, (a = 1, . . . L), e−η ∼
z − yb
z̄ − ȳb

, (b = 1, . . . L̄) .

satisfy the conditions

∂zη =
1

z − xa
+

1

2
γa + o(1) , ∂z̄η = −

1

z̄ − x̄a
+ o(1) , a = 1, . . . L

and
γa = ∂z logP(z)|z=xa

and similarly for yb.
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The MShG equation is a flatness condition for sl(2)-valued connection A = Azdz + Āz̄dz̄.
The connection is not single-valued on the punctured sphere. However, it does return
to the original branch after a continuation along the non-contractible loop C

z2z1

z3

C

Therefore the Wilson loop

W (θ) = Tr

[
P exp

(∮

C

A
)]

does not depend on the precise shape of the cycle used. It can be regarded as generating
functions for the conserved charges

logW (θ) ∼ −q0 e
θ +

∞∑

n=1

cn q2n−1 e−(2n−1)θ as ℜe(θ) → +∞, |ℑm(θ)| <
π

2

here cn = (−1)n

2n!

Γ(n− 1
2
)√

π
.
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Fateev model (1996)

L =
1

16π

3∑

i=1

(
(∂tϕi)

2 − (∂xϕi)
2
)

+ 2µ
[
eiα3ϕ3 cos(α1ϕ1 + α2ϕ2) + e−iα3ϕ3 cos(α1ϕ1 − α2ϕ2)

]

Here αi are coupling constants subject to a single constraint

α2
1 + α2

2 + α2
3 =

1

2
.

α2
1 > 0 , α2

2 > 0 , α2
3 > 0 .

The parameter µ in the Lagrangian sets the mass scale, µ ∼ [ mass ]. We shall consider
the theory in finite-size geometry, with the spatial coordinate x in ϕi = ϕi(x, t)
compactified on a circle of circumference R, with the periodic boundary conditions

ϕi(x+R, t) = ϕi(x, t) .

x~x+R

Aµ = ACFT + µ
∫
d2x Φ (d = 1) .
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Due to the periodicity of the potential term in ϕi,

L =
1

16π

3∑

i=1

(
(∂tϕi)

2 − (∂xϕi)
2
)

+ 2µ
[
eiα3ϕ3 cos(α1ϕ1 + α2ϕ2) + e−iα3ϕ3 cos(α1ϕ1 − α2ϕ2)

]

the space of states H splits on the orthogonal subspaces Hk1,k2,k3 characterized by the
three “quasimomentums” ki:

ϕi → ϕi + 2π/αi : |Ψk1,k2,k3 〉 → e2πiki |Ψk1,k2,k3 〉 .
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The Fateev model is integrable, in particular it has infinite set of commuting local IM
I
(+)
2n−1, I

(−)
2n−1, 2n = 2, 4, 6, . . . being the Lorentz spins of the associated local densities

I
(±)
2n−1 =

∫ R

0

dx

2π

[ ∑

i+j+k=n

C
(n)
ijk (∂±ϕ1)

2i (∂±ϕ2)
2j (∂±ϕ3)

2k + . . .
]

where ∂± = 1
2
(∂x ∓ ∂t) and . . . stand for the terms involving higher derivatives of ϕi,

as well as the terms proportional to powers of µ. The constant C
(n)
ijk is known

(Zamolodchikov, Lukyanov, 2012)

C
(n)
ijk =

n!

i! j! k!

(
2α2

1(1− 2n)
)
n−i

(
2α2

2 (1− 2n)
)
n−j

(
2α2

3 (1− 2n)
)
n−k

(2n− 1)3 (4α2
1)

1−i (4α2
2)

1−j (4α2
3)

1−k
,

where (x)n is the Pochhammer symbol. The displayed terms with the given

C
(n)
ijk set the normalization of I

(±)
2n−1 unambiguously.
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Of primary interest are the k-vacuum eigenvalues

I2n−1 = I
(+)
2n−1({ki} |R) = I

(−)
2n−1({ki} |R)

especially the k-vacuum energy
E = 2 I1 .

In the large-R limit all vacuum eigenvalues I2n−1 vanish except I1. The vacuum energy is
composed of an extensive part proportional to the length of the system,

E = R E0 + o(1) at R → ∞

Specific bulk energy (Fateev, 1996)

E0 = −πµ2

3∏

i=1

Γ(2α2
i )

Γ(1− 2α2
i )
.
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ODE/IM correspondence

The vacuum eigenvalues of the local IM in the Fateev model can be expressed in terms
of the classical conserved charges q2n−1:

µ−1
(
I1 −

1
2
R E0

)
= d1 q1

µ1−2n I2n−1 = dn q2n−1 (n = 2, 3, . . .) .

Here dn are constants, independent of ki and R. With the normalization conditions
for q2n−1 and I

(±)
2n−1 described above, dn reads explicitly as

dn = (2π)2n−1 (−1)n−1

16 π2

3∏

i=1

Γ
(
2 (2n− 1)α2

i

)
.

The parameters of the quantum and classical problems are identified as follows:

α2
i =

ai
4

(i = 1, 2, 3)

|ki| =
1

ai
(2mi + 1)

µR = 2ρ

22



Conclusion

• There a connection between the theory of Integrable Models in two dimensions
and the spectral analysis of Ordinary Differential Equations.

• Classical conserved charges = Eigenvalues of IM in the integrable QFT

• Eigenvalues of transfer matrices = connection coefficients between different
bases solutions of ODE.

• We considered a class of “Perturbed Fuchsian differential equations”

• What is 18? (Mininal dimension of representation of the quantized

exceptional affine superalgebra Uq(D̂(2, 1, ;α)))
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